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An oft-cited shortcoming of Interactive Activation as a psychological model
of word reading is that it lacks the ability to simultaneously represent words
of different lengths.

We present an implementation of the Interactive Activation model,
which we call Metameric, that can simulate words of different lengths, and
show that there is nothing inherent to Interactive Activation which prevents
it from simultaneously representing multiple word lengths. We provide an
in-depth analysis of which specific factors need to be present, and show that
the inclusion of three specific adjustments, all of which have been published
in various models before, lead to an Interactive Activation model which is
fully capable of representing words of different lengths. Finally, we show that
our implementation is fully capable of representing all words between 2 and
11 letters in length from the English Lexicon Project (31, 416 words) in a
single model. Our implementation is completely open source, heavily opti-
mized, and includes both command line and graphical user interfaces, but is
also agnostic to specific input data or problems. It can therefore be used to
simulate a myriad of other models, e.g., models of spoken word recognition.
The implementation can be accessed at www.github.com/clips/metameric.
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The Interactive Activation (IA) model (McClelland & Rumelhart, 1981; Rumelhart
& McClelland, 1982) is the oldest model of word reading, and, despite being
over 30 years old, still enjoys enduring popularity in the field of computational
psycholinguistics.

The model was originally proposed as an explanation of the word superiority
effect (Reicher, 1969), the phenomenon that letters embedded in words are recog-
nized more quickly than letters by themselves. To explain the word superiority
effect, the model posits the existence of three separate levels of processing: a
feature level, which represents the features present in letters, a letter level, which
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represents abstract letter representations, and a word level, which represents
whole-word orthography. Each of these three levels are connected through exci-
tatory and inhibitory connections, where, roughly, things that are causally
connected have excitatory connections. The inner workings of the model will be
explained in more detail below.

McClelland & Rumelhart (1981) showed that the word superiority effect can
be explained through feedback from the word to the letter level. Letters embedded
in words are thus recognized more quickly because of top-down effects: words
cause additional activation in their constituent letters, beyond what is expected
from pure visual information.

Even though the IA model initially was launched as a model of the word supe-
riority effect, its basic principles also lend themselves well to word recognition
in general. As such, the model quickly got reinterpreted as a model of the lexical
decision task. This last fact is especially interesting, as it is this reinterpretation of
the IA model, a model of word recognition, and not its interpretation as an expla-
nation of the word superiority effect, that seems to have had the most impact on
the legacy of the IA model. Indeed, most models that can be considered direct
descendants of the IA model are models of word recognition that do not care
about the word superiority effect.

Examples of such models are the BIA (Dijkstra, Van Heuven & Grainger,
1998) and BIA+ (Dijkstra & Van Heuven, 2002) models, the DRC model (Colt-
heart, Rastle, Perry, Langdon & Ziegler, 2001), the MROM (Grainger & Jacobs,
1996) and MROM-P (Jacobs, Rey, Ziegler & Grainger, 1998) models, the open
bigram model (Grainger & Van Heuven, 2004), SERIOL (Whitney, 2001), the
spatial coding model (Davis, 2010), and the OB-1 model (Snell, van Leipsig,
Grainger & Meeter, 2018). In what follows, we will refer to models that use Inter-
active Activation principles as “IA networks”, while we will refer to the orig-
inal model by McClelland & Rumelhart (1981) as the “IA model”. For example,
SERIOL is an “IA network” because it uses Interactive Activation principles, but
it is not the same as the “IA model”.

One downside of the IA model is that it uses a slot-based encoding scheme, in
which letter detectors are fixed to one position, and do not affect the processing
of neighboring letters. The usage of a slot-based encoding scheme has several
implications. First, it implies that words are left-aligned, which means that the
words “LEAD” and “PLEAD” do not share any letters. Second, it implies that
the base IA model cannot account for effects of flexible letter positioning, such
as the transposition effect (Grainger & Van Heuven, 2004; Grainger, 2008). For
this reason, many newer IA-based models, such as the aforementioned SERIOL
(Whitney, 2001) and spatial coding models (Davis, 2010) have switched to more
flexible encoding schemes.
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Another peculiar downside of the usage of a slot-based encoding scheme is
that it restricts the IA model to words of specific lengths. The claim that IA models
can only deal with words of specific lengths has been explicitly (Davis, 2003), and
implicitly (Dijkstra & Rekké, 2010; Dijkstra, Wahl, Buytenhuijs, van Halem, Al-
jibouri, de Korte & Rekké, 2018) repeated in older and more recent work. Dijk-
stra et al. (2018), for example, implicitly consider the IA model length-specific,
as they only use four-letter words in their IA simulations. To see why this is the
case, consider the words “SWAN” and “SWANS”. Clearly, when presented with the
string “SWANS”, the word “SWAN” would also be activated, as it shares four out of
five letters with “SWANS”. Nevertheless, “SWANS” would still receive more activa-
tion than “SWAN”, because the final ‘S’ sends bottom-up activation to “SWANS”,
but not to “SWAN”. However, it is not clear how “SWANS” and “SWAN” can be
distinguished if “SWAN” is presented to the model; since there is no letter present
to cause additional activation for “SWAN”, both “SWAN” and “SWANS” will be
activated equally.

The length-specificity is usually seen as a downside of employing IA models,
as this automatically prevents many interesting interactions, such as the afore-
mentioned interaction between “SWAN” and “SWANS”. The length-specificity of
the IA model is caused by the weights, i.e., the weights specified in the original
IA paper (McClelland & Rumelhart, 1981), which are meant to be used with four-
letter words. That is, if the original IA weights are used to simulate words of other
lengths, the fit to the data will be much worse (see Experiment 2, below). Hence,
even if the IA model is expanded to operate on words of lengths different from
four (e.g. Grainger & Jacobs (1993) used words of length five instead of four),
there is no guarantee that the weights employed in the IA model can be utilized
to simultaneously model words of different lengths. In summary, the idea that the
IA model can only deal with words of the same length, is likely caused by a mix
of sociological factors, e.g., the original model only using four-letter words, and
technical factors, e.g., the weights of the original model not being appropriate for
words of lengths other than four.

In this paper, we show that IA networks are fully capable of simultaneously
representing words of different lengths, without changing the fundamental equa-
tions governing these networks. We show that the inability to represent words
of different lengths is not a consequence of the model itself, but rather of the
way the data presented to the model is organized. We show that there are three
specific conditions that need to be fulfilled to allow the model to represent words
of different lengths. The first two conditions are both related to negative informa-
tion, i.e, information about what is absent in the input. Only the addition of this
information allows the model to correctly distinguish between words which are
proper subsets of other words, e.g., “SWAN” and “SWANS”. The third condition is
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a length-dependent weight adaptation scheme. Finally, we also present Metameric,
a fast simulator for IA networks that is easily extensible to cover more general
localist modeling, and provide a brief introduction to its use.

The paper is structured as follows: We first introduce the IA networks and
the equation governing it. Following this, we introduce three adjustments that
allow the IA model to deal with words of different lengths. We then perform three
experiments: first, we reproduce the results of the original IA model using four-
letter words (McClelland & Rumelhart, 1981), thereby validating our implementa-
tion. In the second experiment, we introduce all three adjustments separately, and
measure the impact each of these adjustments has on the correlation between the
model output and Reaction Times (RT). In the third experiment, we model the
entire English Lexicon Project (Balota, Yap, Hutchison, Cortese, Kessler, Loftis,
Neely, Nelson, Simpson & Treiman, 2007) in a single model, and show that this
increases the correspondence between cycle times and Reaction Times, showing
that the extending the IA model in this manner is useful for future experiments.
Finally, we explain the standard usage of Metameric with regard to experiments
involving IA networks.

Interactive Activation networks: The general framework

To make the adjustments to the model as clear as possible, we will first outline the
general framework of Interactive Activation.

An Interactive Activation network is a localist connectionist model, in which
nodes are organized into layers, which are connected by excitatory or inhibitory
links. An IA network is called localist because each of its neurons, or nodes,
uniquely identifies some item (Page, 2000). Localist representation contrasts with
distributed representation, in which items are uniquely identified by the joint
activation pattern over multiple nodes. In the framework of IA, layers represent
groupings of items, and nodes belong to a single layer. For example, the nodes in
the IA model are organized into a feature layer, a letter layer, and a word layer,
in which nodes uniquely represent single features, single letters, and single word,
respectively.

Every node has inhibitory or excitatory connections to other nodes. Impor-
tantly, while connections between layers can be either inhibitory or excitatory, the
connections within a layer are always inhibitory.

Besides inhibitory and excitatory connections, each node also has an asso-
ciated activation level, which denotes the degree of activation of that node, and
a resting level activation (RLA), which denotes the activation level to which the
node returns in absence of external input. In general, IA models have excitatory
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connections between nodes whose presence implies the other, inhibitory connec-
tions between nodes whose co-existence is contradictory, and no connections
between nodes that do not co-occur systematically. For example, the node that
represents the letter “A” in the first position has excitatory connections to words
like “ALCOVE” and “ARMOUR”. This same “A” also has inhibitory links to all
other words in the lexicon that do not have an “A” as their first letter. Similarly, the
letter “A” has no links to nodes in the second slot, as the presence of the letter “A”
in the first slot neither confirms nor denies the existence of any other letter in the
second slot.

Data is presented to an IA network by “clamping” nodes in one or more
layers, which sets them to a given value, and then updating the model until some
threshold for recognition is met. The number of updates it takes for the model
to converge is commonly known as the cycle time, and is assumed to be a direct
analogue to reaction time in behavioral experiments (Grainger & Jacobs, 1996;
Jacobs et al., 1998; Davis, 2003; Davis & Lupker, 2006).

The update equations for the IA model are as follows:

First, for a given node with index i, the net input is calculated. The net input is the
sum of all active nodes multiplied by their weights, where an active node is a node
with an activation >0.

Where wij is the weight matrix between nodes. For notational simplicity, we
assume that nodes that are not connected have a weight of 0. Similarly, excitatory
and inhibitory connections positive and negative weights, respectively. Given the
net input, the update of the node exti is calculated as follows:

Where ai is the activation of the node, max is the maximum activation, and min
is the minimum activation. In all our simulations max and min are set to 1.0 and
−0.2, respectively. This update equation ensures that the update gets smaller as the
activation of the unit in question gets closer to the maximum or minimum values.

In tandem with exti, the decay, di is calculated:

di =decay(ai − resti)

Decay is responsible for driving the activation back to the resting level, the magni-
tude of which is dependent on the difference between the activation and the
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resting level; the further away the node currently is from the resting level, the
larger the decay factor is. This weight decay is scaled by a weight, decay, which we
set to .07. The decay and external input are then combined, as follows:

This update rule clearly demonstrates the two competing forces at work in IA
networks; each node is driven by external input, but simultaneously desires to
return to its resting level activation. It is worth noting that IA networks are
member of a larger class of models, often called resonance theory models (Gross-
berg, 1978), although they are not necessarily completely compatible with them
(Grossberg, 1987).

The IA model

An IA model is an IA network which consists of three separate layers. The bottom-
most layer is the feature layer, which contains position-specific letter features in
a fourteen segment encoding (Rumelhart & Siple, 1974). The fourteen segment
encoding broadly encodes the visual similarity between letters by assigning line
segments in letters separate features.

The feature layer links to a letter layer, in which each letter in each position is
assigned a separate node, e.g., the letter “G” in the first position is both different
from “S” in the first position and “G” in the second position. Each feature in the
feature layer has an excitatory connection to the letters which contain that feature,
and inhibitory connections to letters that do not contain that feature. Finally, the
letter layer links to a word layer, in which nodes represent whole (orthographic)
words. The word and letter layers are related like the letter and feature layers; words
that contain a letter in a specific position have an excitatory connection from that
specific letter node, and inhibitory connection to all other letter nodes in that posi-
tion. The word nodes also have a feedback connection to the letter nodes; words
containing a specific letter excite the node assigned to that specific letter.

The three adjustments

In this section, we will explain the three adjustments we made to the model.

Negative features

The first adjustment concerns the feature level. As explained above, the nodes
of the feature level correspond to line segments in letters, where features have
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excitatory connections to letters that contain them, and inhibitory connections
to letters that do not contain them. While this situation seems to cover the situa-
tions that apply to our understanding of the world; features are either present or
absent, it leads to a situation in which negative evidence is not correctly utilized
by the model.

As an example, consider that all features having an excitatory connection to
“O” also have excitatory connections to “Q”, that is, the features with excitatory
connections to “O” are a proper subset of those with excitatory connections to
“Q” Recall that, according to equation 1, only active nodes contribute to activa-
tion. This implies that the presentation of the features contained in the letter “O”
leads to the equal activation of the letter “Q”, as all features linked to “O” are also
linked to “Q”. The IA model effectively does not have a way of representing the
absence of a given feature; a feature which is set to 0, and effectively absent, does
not inhibit or excite anything. The sole feature that is not shared by “Q” and “O”,
the diagonal line segment, is not present when “O” is present, and hence does not
affect the activation of the model.

The only way to solve this in the framework of IA is to add the absent features
as having excitatory connections to letters that do not contain them. Adding
these negative features is equivalent to a procedure known as complement coding
(Carpenter, Grossberg & Rosen, 1991b), and is utilized heavily in Adaptive Reso-
nance Theory (Carpenter and Grossberg, 1987b) models, such as ART (Carpenter
& Grossberg, 1987a) and ARTMAP (Carpenter, Grossberg & Reynolds, 1991a).
Complement coding consists of normalizing all features so that they fall into the
interval (0,1), and then adding a negative feature x′ for each positive feature x
which has the value 1 −x. For binary features, which are by definition in (0,1),
complement coding simply consists of adding a feature value of 1 for each value of
0 and vice versa.

After adding the negative features, the letters “O” and “Q” still largely overlap
in their features, but now the model has the power to differentiate between “O”
and “Q”, as the absence of the small diagonal line segment in the “Q” negatively
contributes to the activation of “Q”, but positively contributes to the activation of
“O”.

Note that it is unclear whether this adjustment was present in the original IA
model. For one, the appendix of the original paper introducing IA mentions the
following: (McClelland & Rumelhart, 1981):

There is another array that holds the information the models has detected about
the display. Each element of this array represents a detector for the presence or
absence of a feature. When the corresponding feature is detected, the detector’s

(remember that both absence and presence must be detected)value is set to 1.
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We therefore entertain the possibility that the negative features were already
present in the original formulation of IA, and test this possibility specifically in
Experiment 1.

Space padding

As we saw in the previous section, negative features are necessary to be able to
correctly distinguish between letters whose features are a proper subset of the
features of a different letter in the same position. A similar situation applies to
words, although it can only arise if words with different lengths are considered
within the same model.

As an example, consider the words “SWAN” and “SWANS”. Like “O” and “Q”,
the letters contained in “SWAN” are a subset of those in “SWANS”. Hence, if the
word “SWAN” is presented to the model, the word representations of “SWAN”
and “SWANS” are both activated equally. Moreover, due to the feedback from
“SWANS” to the letter “S” in the fifth position, “SWANS” ends up accumulating
more activation, and ends up being the word with the highest activation, which is
an undesirable situation.

This problem can be solved by adding explicit space characters as padding to
each word, and by considering these space characters as full letters in the letter
layers. These space characters thus have inhibitory links to all features signaling
the presence of a line segment, and excitatory links to all features signaling the
absence of a line segment.

If a space character is added explicitly, the presentation of “SWAN” to the
model will no longer activate “SWAN” and “SWANS” equally, because “SWANS”
will be inhibited by the space character, and “SWAN” will be activated by the space
character.

Note that, unlike the addition of negative features, this is not equivalent to
complement coding, as there is only one negative feature for each slot.

This innovation was already included in the implementation of the DRC
model of Coltheart et al. (2001).

Weight adaptation

Finally, we also include an adjustment we call weight adaptation, in which the
weights of the IA model are adapted to the length of the words in the model.
This innovation was first proposed and used by Loncke, Martensen, Van Heuven
& Sandra (2009). To adapt the weights of the IA model to a specific length, we
multiply the weights between the word and letter layers of the original IA model
by four (i.e., the number of slots of the original IA model.) Then, given a lexicon
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with words of variable length, we divide the excitatory connections by the length
of the longest word in the lexicon, while multiplying the inhibitory connections
by the length of the longest word in the lexicon.

As an example, consider the excitatory connections between words and
letters, which are set to .3 in the original formulation of the IA model (McClelland
& Rumelhart, 1981). In our model we first multiply this weight by 4, and then
divide this by the number of desired slots in the simulation. If the longest word in
our simulation is, for example, 7 letters, our final weight would be .

Because all words are padded with space characters, this ensures that the
amount of excitatory and inhibitory information flowing between words is kept
constant.

Experiments

To show the influence of each of the proposed innovations, we ran multiple exper-
iments. In all experiments, we used two measures to quantify how well our models
are doing: accuracy and correlation to lexical decision Reaction Times (RT).

Accuracy is defined as the proportion of items which were correctly classified:

Where correct and incorrect are sets containing the instances where the model
was correct and incorrect, respectively. The |.| operator is the cardinality operator.

These measures are warranted because we require that a good model of word
reading simultaneously produces the correct response to a word, while also corre-
lating well with behavioral measures. We use Lexical Decision RT measurements
as our behavioral measure because the IA model implements a theory of lexical
decision, and therefore ought to correlate with RT measurements.

We measure accuracy by storing the most active word after convergence on
presentation of a word. If the orthographic form of the most active word after
convergence was equal to the presented word, we counted it as correct. Following
Grainger & Jacobs (1996), if the model did not converge, i.e., it did not reach
the threshold of .7 before a pre-specified large number of cycles was reached,
we counted it as incorrect. In all experiments, we only calculated the correlation
between cycle times for words which were correctly recognized.
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Data

All experiments were carried out using a subset of the English Lexicon Project
(ELP) (Balota et al., 2007). Specifically, we extracted all words from the ELP
between a length of 3 and 10 inclusive. We removed any words which did not
solely consist of alphabetic characters, e.g., words containing the genitive marker,
dashes, or spaces. This remaining subset consisted of 29,173 words.

Experiment 1. Replication

In this experiment, we run the original simulations of the IA model using all
four-letter words in our lexicon, a set of 1907 words. Out of this set of words,
we sampled 100 subsets of size 1430 (75% of 1907), based on the log frequency
of those words. Sampling allows us to effectively simulate multiple participants,
and simulate the effect of different corpora on the performance of the IA model.
Our sampling strategy was as follows: we first binned the original data into bins of
width 1, based on their log frequency, i.e., all words whose log frequency started
with the same number were put in the same bin. We then noted the proportion of
the number of items in each bin, compared to the total number of items. We then
sampled a number of items from each bin, proportional to their total number of
items in the corpus. This ensures that even low-frequency items get sampled often
enough for us to have reliable estimates, and ensures that high-frequency items do
not dominate our results.

When analyzing the results, we saw that the original IA model does not
achieve an accuracy of 1.0, as seen in Figure 1. The main cause for this seems to be
the lack of negative feature input. We see, for example, that “ZING” and “ZINC”
are activated equally on presentation of “ZINC”, thereby keeping the model from
converging. This is because the features in the letter “G”, as mentioned above, are
a strict superset of the features in the letter “C”.

This makes it likely that the original IA model does include negative features,
as hypothesized above. We therefore run the same simulation again, this time
including the negative features, which brings it in line with the expected behavior
of the model.

Figure 1 shows the distribution over accuracy scores of both models. The
model without negative features achieves an accuracy of 0.756 (+/−0.01), while
the model incorporating negative features achieves an accuracy of 1.0 (+/− .0).
This clearly shows that the addition of negative features is required for the model
to function.

Figure 2 shows the correlation scores between cycle times and RT measure-
ments from the ELP. The model without negative features does not correlate well
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Figure 1. The accuracy scores of both models in Experiment 1. This clearly shows that the
model requires negative features to function correctly

Figure 2. The correlations with RT of both models in Experiment 1. This also shows
shows that the model requires negative features to function correctly

with RT measurements, and achieves a mean correlation of −0.026 (+/− 0.032).
The model that includes negative features achieves mean correlation of 0.26
(+/− 0.02), indicating a fair correlation with RT. Again, we see an enormous influ-
ence of the inclusion of negative features.
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Experiment 2. Adding the adjustments

In this set of experiments, we ran models on sampled subsets of the 29,173 words
selected from the ELP. Because we have three adjustments, we can define eight pair-
wise combinations of these three adjustments, leading to a set of eight model types.

As in the previous experiment, we sampled 100 subsets by their log frequency,
although the size of these subsets was 25% of the full set (7293 words) instead of
75%. We lowered the number of items in each sample because of computational
reasons; our IA simulator is fast, but IA in general slows down immensely for
degenerate cases in which the threshold is not reached.

Figure 3. The accuracy scores of the models using the various adjustments. As the figure
shows, only the model using all three adjustments achieves the desired accuracy score of
1.0. The model without any adjustments still achieves a high accuracy score. Moreover,
the addition of length adjustment without the addition of the other adjustments has a
negative effect on performance

The accuracy scores of the various models are shown in Figure 3. As before, the
distributions are calculated over the 100 subsets. The only model achieving an
accuracy of 1.0, which is desirable for models of word reading, is the model with
all three adjustments. The accuracy of models without length adjustment is also
uniformly high, and ranges between .93 and .98, although it never reaches 1.0.
Models with length adjustment that do not have both other adjustments have
uniformly low scores.

That models without adjustments, or models with only some adjustment, also
get high accuracy scores raises the question of whether the adjustments are useful
at all.
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Figure 4. Correlations with RT of the models with various adjustments. As this graph
shows, there is a uniformly negative trend for all models that do not include all positive
features

Considering the correlation with RT, however, we see that only the model with
all three adjustments has a positive correlation with RT. Figure 4 shows the corre-
lations between RTs and cycle times. While the models without the adjustments
have high categorization accuracy, their correlation with RT measurements is
negative, which is the opposite of what we expect.

The cycle time of the model with all three adjustments correlated well with RT
0.54 (+/− 0.005). Note that this correlation is also higher than the 0.26 reported
for the model with only four-letter words. This underscores that it is important
to create models which can account for the full range of empirical data before
drawing conclusions from them; adding words of different lengths to the model
apparently causes the model to more closely fit empirical data.

Finally, we also expect cycle time to vary with word length; a situation which,
until now, was not testable within the framework of Interactive Activation. The
results of this analysis are shown in Figure 5.

This, again, shows that the adjustments are necessary; models without all
adjustments have negative correlations with word length, which is contrary to
empirical evidence.

Experiment 3. Simulating the English Lexicon Project

Finally, we perform a single experiment in which we simulate all 31,416 words
selected from the ELP in a single model. For this model, the correlation between
cycles and RT was 0.57, showing results consistent with Experiment 2, and which
confirms our hypothesis that adding more words leads to a better model fit.
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Figure 5. The correlation of various models with length

We also plot the cycles versus RTs for all words, together with a single linear
regression with cycles as independent variable and RT as a dependent variable.
This is shown in Figure 6, and shows that the IA model tends to overestimate the
cycle times for words with lower RTs.

Figure 6. The scatter plot of Experiment 3. The y-axis is the RT and the x-axis is the cycle
time. The red line shows a simple linear regression with cycle time as an independent
variable and RT as the independent variable
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Experiment 4. Comparison with jIAM

The only other currently available Interactive Activation simulator is jIAM, which
is only available as a web interface, and closed source. As a comparison to jIAM,
we presented the corpus used in experiment 1, i.e., the 1907 four-letter words from
the ELP, to the web interface of jIAM and Metameric.

jIAM took 15 minutes and 12 seconds to process the words, while Metameric
took approximately 3 seconds. Additionally, we attempted to run jIAM on the full
ELP, but it crashed after presentation of the first word.

A caveat given these timings: jIAM is only available as a web application,
and therefore necessarily involves the rendering of an interface, which takes
processing time.

Nevertheless, these timings still give a good indication of the time a researcher
or user has to spend waiting for results, and show that our implementation is able
to represent vastly more words than jIAM.

Intermediary conclusion: A common thread

In the previous section, we showed that the only way to guarantee correspondence
with empirical results is to implement exactly these three adjustments. What is
lacking so far is a rationale as to why these three adjustments are all necessary for
the model to function. We argue that the single principle behind all three adjust-
ments is normalization: all three adjustments ensure that the amount of activa-
tion flowing into, and out of, each node is constant. Without negative features, for
example, words with more features would get more activation. After adding nega-
tive features, each node has 14 excitatory connections to 14 different features, some
of which are positive, and some of which are negative. Similarly, before adding
the space character, longer words have more incoming activation, simply because
these words have more characters.

Hence, the addition of space characters and negative features both cause
normalization because they ensure that words and letters have the same number
of incoming connections, while weight adaptation normalize the total positive
and negative activation flowing into nodes not associated with a length.

Metameric

In addition to the theoretical arguments above, we also present a fast IA simulator,
called Metameric. We will briefly describe the typical overview of a Metameric
experiment, although we will refrain from describing the inner workings of the
simulator, as these will be subject to change in the future.
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An experiment with Metameric generally encompasses two stages. First, data
needs to be prepared, which means that the appropriate letter features and letter
segment features are assigned to each word. Second, the previously prepared data
is fed into the model, which can then be used to run an experiment. Before
describing these two steps, we will describe the kind of input data Metameric
accepts.

Data input

In order to run an experiment, Metameric must be provided with two separate
input files: and Comma Separated Value (CSV) file containing the weights, which
we call the weight file, and a second CSV files containing the data, which we call
the lexicon.

The weight file contains the positive and negative connections between each
layer in the model to be created, and hence also specifies the structure of the layers
in the IA model.

The lexicon, on the other hand, specifies which nodes will be added to each
layer: each row in the lexicon is assumed to be a separate item, while each column
is assumed to correspond to characteristic which can be used in the creation of the
IA model. Note that only columns that are present in the weight file will be used
in the IA model. This has the advantage of being able to directly use well-known
databases, such as those from the ELP (Balota et al., 2007) and other Lexicon
Projects without having to sanitize or otherwise clean them.

Because of this structure, Metameric is a completely data-driven IA simulator;
the user does not have to prespecify features, nodes or symbols in advance, there
are all derived from the input data, which ensures both a parsimonious as well as
a consistent model.

Preparing the lexicon

As an IA network is a localist connectionist model, the main effort in creating
a model is setting up the lexicon in an appropriate format. To facilitate this,
we include a preparation utility that can be used to decompose and featurize
fields. Decomposition is defined as turning an otherwise symbolic string of letters,
phonemes, or other characteristics into a slot-based set of items. For example, the
decomposition of the string “DOG” into letters is “D-0 O-1 G-2”. Of course, not
all fields are amenable to decomposition, an example of this being a system which
contains semantic symbols.

Featurization is carried out on a slot-based decomposed layer, e.g. the letter
layers as above, and is defined as turning each of the individual items in each slot
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into a number of features, as in the canonical IA model. An important note is that
featurization can be carried out on fields which are created by the decomposition
process.

As Metameric is completely agnostic to its input data, it is a generic IA
network simulator, models with phonological layers, such as the MROM-p
(Jacobs et al., 1998) model, or language nodes, such as the BIA (Dijkstra et al.,
1998) and BIA+ (Dijkstra & Van Heuven, 2002) can also be easily constructed
within Metameric.

Running an experiment

After preparing the lexicon, it can be used to construct and run a model. As
explained above, the model is automatically constructed upon being fed a lexicon
and a weight matrix. Both the web interface and the CLI offer a great deal of
control over all parameters of the IA model. As said above, all other weights and
connections in the IA model are automatically set based on the data in the input
lexicon.

After creating a model, it can be fed data from the lexicon, or entirely new
data. Data which is fed into the model is returned in exactly the same format, i.e.,
a CSV with item characteristics, but with an added column of cycle times.

Extending metameric

Metameric is easily extensible, and can be directly used within python scripts
to provide a great deal of control over the simulator. The core components of
Metameric are heavily optimized, and completely agnostic to the input data, and
can therefore be used to simulate different Interactive Activation networks.

The web interface

The web interface offers a concise and user-friendly way for non-programmers to
automatically construct IA models and run experiments using their own stimuli.
After starting the web interface, the user simply has to visit a locally hosted
website, which will then show the Metameric web interface.

The website contains the following components, which are grouped under
separate tabs.

Experiment
Perform an experiment using formatted CSV data and user-defined parameters.
The Experiment screen is shown in Figure 7.
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Figure 7. The experiment screen with the default parameters

Prepare
The prepare tab is used to prepare data for input in an IA model, and provides a
concise interface to the preparation module detailed above. The prepared CSVs
are stored locally, allowing users to freely switch between using the web interface
and CLI after preparing the data.

Analyze
Finally, the web interface allows users to interactively plot model responses. After
model creation, the user is led to a screen in which input can be interactively
provided to the model, allowing the user to inspect how the model reacts to
various words or non-words. An example of the analysis screen is shown in
Figure 8.

Conclusion

In this paper, we have presented an analysis of one of the main shortcomings of
the Interactive Activation model; the inability of the model to deal with words of
different lengths. We have shown that there is nothing inherent to the IA model
that prevents it from modeling words of different lengths. Although slot-based
encodings clearly have downsides in that they do represent letter order explicitly,
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Figure 8. An example of an analysis picture produced by Metameric

it is important that we know the limits of these encodings and models, both for
our theoretical understanding of the IA model, and localist modeling in general.

In addition to the analyses, we also presented a fast and highly extensible IA
simulator, called Metameric, which is open source and highly extensible. We hope
that both parts of this paper, i.e., the analysis and the simulator, will lead to future
research into Interactive Activation models, and Interactive Activation networks
in general.
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