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One of the tasks faced by young children is the segmentation of a continuous stream of

speech into discrete linguistic units. Early in development, syllables emerge as perceptual

primitives, and the wholesale storage of syllable chunks is one possible strategy for

bootstrapping the segmentation process. Here, we investigate what types of chunks

children store. Our method involves selecting syllabified utterances from corpora of

child-directed speech, which we vary according to (a) their length in syllables, (b) the

mutual predictability of their syllables, and (c) their frequency. We then use the number of

utterances within which words are contained to predict the time course of word learning,

arguing that utterances which perform well at this task are also more likely to be stored,

by young children, as undersegmented chunks. Our results show that short utterances

are best-suited for predicting when children acquire the words contained within them,

although the effect is rather small. Beyond this, we also find that short utterances are

the most likely to correspond to words. Together, the two findings suggest that children

may not store many complete utterances as undersegmented chunks, with most of

the units that children store as hypothesized words corresponding to actual words.

However, dovetailing with an item-based account of language-acquisition, when children

do store undersegmented chunks, these are likely to be short sequences—not frequent

or internally predictable multi-word chunks. We end by discussing implications for work

on formulaic multi-word sequences.

Keywords: segmentation, undersegmentation, chunks, multi-word units, formulaic language, age of first

production

1. INTRODUCTION

The present study investigates undersegmented chunks in child language development. Previous
work suggests that young children sometimes store speech sequences such as Oh dear or Where’s
it gone as internally unanalyzed chunks, without having discovered smaller constituents such as
words or phonemes (Lieven et al., 1992; Pine and Lieven, 1993).

This is, most likely, a result of word segmentation: When children do not yet know what
the meaningful units in their language are, they could initially store some speech sequences as
undersegmented chunks, which are then further analyzed by comparing chunks to known lexical
items (MacWhinney, 1978; Peters, 1983). In this paper, we are interested in the nature of such
undersegmented chunks.
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As one possibility, children could extract and store frequently
recurring speech sequences. Frequency effects are pervasive
in language development, with children acquiring frequent
words, morphemes, and even syntactic constructions before less
frequent exemplars (Ambridge et al., 2015). Consequently, it
would be sensible to expect preferential storage of particularly
frequent chunks. Alternatively, perhaps frequency is less
important than input properties that indicate whether a given
sequence corresponds to a discrete linguistic unit, such as a
word or a morpheme. Next to frequent chunks, we thus consider
two other, potentially more word-like chunk types: especially
internally predictable and particularly short chunks.

A landmark study by Saffran et al. (1996) first demonstrated
that children can exploit conditional probabilities between
adjacent syllables in order to extract nonsense words from
a continuous stream of speech. This raises the more general
possibility that, during the word segmentation process, children
use syllabic predictability to extract multi-syllable chunks from
speech. Chunks with high syllabic predictability might be more
likely to correspond to discrete linguistic units than frequent
syllable sequences, and perhaps this inclines children to store
internally predictable rather than frequent undersegmented
chunks.

Yet another possibility is that stored chunks are neither
frequent nor predictable, but simply short. Children’s memory
for speech sequences is likely to be limited with respect to
the length of memorized material, and this could predispose
them toward preferentially storing short chunks. This argument
forms part of MacWhinney (1978, 2014)’s theory of item-
based learning, wherein children initially extract short phrases as
single lexical items (i.e., as chunks) and further analyze extracted
chunks via comparison to known items.

Relative to longer speech sequences, short sequences are also
unlikely to contain smaller linguistic units and might thus appear
more word- or morpheme-like to the language-acquiring child.
As a consequence, perhaps children are more likely to store short
rather than frequent sequences as undersegmented chunks. In
this study, we investigate all three chunk properties—(1) whole-
chunk frequency, (2) syllabic predictability, (3) chunk length—,
and we ask to what extent children rely on these properties during
the extraction of an initial chunk vocabulary.

The remainder of the paper is structured as follows. First,
we survey evidence for the existence of unsegmented chunks
in young children, arguing that they emerge as a by-product of
word segmentation. Following this, we provide a brief sketch of
our method, which involves selecting multi-syllable utterances as
sequences that could potentially be stored (by young children)
as undersegmented chunks. Varying the syllabic predictability,
frequency, and length of selected utterances, we evaluate which
multi-syllable utterances (henceforth MSUs) perform better at
predicting the time course of word learning.

Our method extends previous work by Grimm et al. (2017),
who found that words contained in a large number of multi-
word phrases tend to be learned early in development. Referring
to Peters (1983), Grimm et al. (2017) suggest that children
store some phrases as undersegmented chunks. Chunks are then
compared to one another in order to identify shared sub-units.

And the more chunks contain a particular unit (such as a word),
the easier it should be to discover that unit. We expand on this
by evaluating whether short, frequent, or internally predictable
MSUs perform better at predicting when their constituent words
are learned—arguing that well-performing MSUs are more likely
to be stored within children’s early proto-lexica.

1.1. Evidence for Children’s Unanalyzed
Chunk Vocabularies
Young children sometimes produce utterances in ways which
suggest that they are treated as (partially) unanalyzed wholes.
Peters (1983) surveyed various examples, including e.g., the child
utterance I don’t know where’s Emma one, which appears to
consist of the previously heard utterances I don’t know and
Where’s Emma one; or I all very mucky too, given in response
to the statement We’re all very mucky1. Observations like these
suggest that children could extract and store in memory (a
subset of) uninterrupted speech sequences. Children might then
bootstrap a vocabulary of smaller units by comparing stored
chunks to one another and to incoming speech—a proposal,
going back to MacWhinney (1978), which Peters (1983)
discusses as a possible strategy for early speech segmentation.

The idea receives support from a systematic investigation
conducted by Lieven et al. (1992), who analyzed the productive
vocabularies of twelve English-speaking children through
parental reports and analyses of child-caregiver interactions.
Child-produced multi-word utterances were coded as frozen
phrases if they contained at least two words which had not
previously occurred in isolation within the vocabulary of the
child—or if they contained only one such word, so long as
the word had not occurred in the same position within a
previous utterance. Lieven et al. (1992) found that their subjects’
productive vocabularies, at 50 and 100 produced units (phrases
or words), contained around 20% frozen phrases. This reliance
on frozen chunks, although practiced to different degrees by
different subjects, seems to be a strategy shared by all children
(Pine and Lieven, 1993).

By comparing stored chunks to other items, MacWhinney
(1978) proposed, children could discover chunk-internal
positions of variability (slots). Within the theory of item-based
learning (MacWhinney, 1978, 2014), slots are attached to
predicates and can be filled by arguments (e.g., object, as in the
pattern give me + object). Lieven et al. (2009) implemented a
similar idea in a computational method that reconstructs child
utterances on the basis of earlier productions. The method
first attempts to match a given utterance with earlier child
productions and, if this is not possible, inserts abstract slots. For
example, upon observing the utterances I go bathroom and I
go home, it could create an I go + location construction. Lieven
et al. (2009) report that between 20 and 40% of their 2-year-
old subjects’ utterances could be exactly matched to previous
productions, while the majority of non-exact matches required
the insertion of just a single slot. These results are echoed by
Bannard et al. (2009) and Borensztajn et al. (2009), who also
worked with child-produced speech and applied methods for

1Both examples were originally reported by Clark (1974).
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grammar induction that can discover both lexicalized and
abstract constituents.

The early building blocks of child language, then, appear to
include unanalyzed chunks. Such findings can be situated within
a usage-based approach to language acquisition (Behrens, 2009;
Tomasello, 2009), a framework which conceives of early linguistic
representations as lexically specific units that often span multiple
words. Representations are refined and become more abstract
over time, and the developed cognitive system operates with
both lexically specific and more abstract patterns2. Unanalyzed
chunks, that is, should only exist for a short developmental
window, when children are faced with the task of segmenting
continuous speech into discrete units. But once that process is
complete, smaller linguistic units should replace the initial chunk
vocabulary. We next review converging evidence from empirical
studies and computational models of word segmentation in
support of this notion.

1.2. Undersegmented Chunks During Word
Segmentation
One of the first challenges faced by children during language
development is what Peters (1983) called the initial extraction
problem: Without knowledge of the units in their target
language(s), which speech sequences should children pick out as
hypothesized linguistic units? Early perception studies showed
that 2-month-olds demonstrate improved discrimination of
syllable-like sequences (Bertoncini and Mehler, 1981) and are
proficient at storing information pertaining to the syllabic—but
not the phonemic—structure of speech (Jusczyk and Derrah,
1987). Follow-up work suggests that even 4-day-old neonates
perceive speech in terms of syllables (Bijeljac-Babic et al., 1993).
And on the computational modeling side, it is possible to
segment speech into units that closely resemble syllables by
tracking changes in sonority (Räsänen et al., 2015, 2018)—i.e., by
attending only to changes in audibility, without reliance on prior
linguistic knowledge. The syllable thus presents a good candidate
for an early perceptual primitive in speech.

As one possible segmentation strategy, children could focus
on sequences characterized by high transitional probabilities
(TPs) between syllables3. In a seminal study, Saffran et al. (1996)
exposed 8-month-olds to synthesized streams of nonsense words,
with no cues to word boundaries other than the co-occurrence
patterns of syllables. Within-word TPs of four different three-
syllable nonsense words (e.g., padoti or golabu) were 1.0 (e.g., go
was always followed by la), while TPs between syllables spanning
word boundaries were 0.33 (e.g., bu could be followed by the
first syllable of three other words). In the testing phase, subjects
listened longer to sequences which spanned word boundaries
than to the more internally predictable nonsense words. Infants
typically pay more attention to novel stimuli, and less to familiar

2This idea re-surfaces in accounts of adult linguistic competence which include

constructions as constituents (Goldberg, 2006; O’Donnell, 2015).
3In psycholinguistics, the term transitional probability has come to denote

conditional probabilities between units. Conditional probability is a measure of

association strength between two elements that is normalized by the frequency of

the non-conditional element.

ones. Saffran et al. (1996)’s results thus imply that subjects
were familiar with the internally predictable nonsense words.
Infants, that is, appear capable of exploiting statistical regularities
between syllables to segment words from fluent speech. Aslin
et al. (1998) replicated these results while keeping the frequencies
of nonsense words constant, demonstrating that TPs provide a
useful cue even when they are not correlated with frequency4.

There are, of course, other potential segmentation cues,
such as stress or co-articulation (Johnson and Jusczyk, 2001;
Thiessen and Saffran, 2003). Sensitivity to certain cues seems
to be present at an early age, while other cues are only used
at later stages. For example, 7-month-olds exhibit sensitivity
to TPs but not to stress, while 9-month-olds can exploit
stress patterns in an artificial segmentation task (Thiessen and
Saffran, 2003). Thiessen and Saffran (2003) hypothesize that
this indicates an early exploitation of statistical structure in
order to extract a first set of words. These are then used to
discover language-specific stress patterns, which can help to
further segment the input. Extracted units could correspond to
actual words, but this need not always be the case. Some units,
extracted via reliance on statistical structure, could be stored
as undersegmented chunks; and by comparing chunks to one
another, children could discover language-specific segmentation
cues, bootstrapping further segmentation. This bootstrapping
approach to segmentation has the potential to explain other
patterns in language development, such as the emergence of
phonemic categories before the presence of a large receptive
lexicon: If children approach segmentation by constructing a
proto-lexicon of chunks, early phonemic contrasts could emerge
as a result of identifyingminimally different chunks (Martin et al.,
2013).

Under such a proposal, undersegmented chunks are a side-
effect of the segmentation process, and they would become
fully analyzed once that process is complete. Evidence from
computational models of word segmentation supports this view.
The models described by Goldwater et al. (2009), for example,
start from phoneme sequences, which are then segmented
on the basis of statistical regularities between phonemes5.
Discovered units include words, but also many undersegmented
chunks. Another segmentation strategy, not mutually exclusive
with reliance on statistical structure, is the wholesale storage
and gradual breaking-down of full utterances. In this possible
scenario, children initially store full utterances as holistic units,
and novel input sequences are only split if another unit (stored
in memory) is contained within them, leading to the discovery of
more and more fine-grained units. Computational models which
implement this strategy (Lignos and Yang, 2010; Monaghan and
Christiansen, 2010; Lignos, 2012) achieve excellent performance6

4Various studies have since shown that the underlying mechanism can operate

on non-linguistic auditory as well as visual stimuli, and that it is not restricted to

humans. See Aslin (2017) for a review.
5See Phillips and Pearl (2015) for similar models which operate on syllables rather

than on phonemes.
6Cf. Phillips and Pearl (2015), who compared several state-of-the-art Bayseian

segmenters to Lignos (2012)’s model. As long as the input is represented in terms

of syllables, and not in phonemes, the chunk-based segmenter performs similarly

to Bayseian approaches.
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and thus demonstrate how a large number of undersegmented
chunks could accumulate as by-products of the segmentation
process. There is even some tentative experimental evidence
for chunk-based segmentation strategies in child language
acquisition: 2-month-olds show improved memory for speech
when it is contained in clause-like units, compared to being
presented in list form or spanning clause boundaries (Mandel
et al., 1994); and at the same time, it has been demonstrated that
6-month-olds can use their own name or the word mommy to
segment unfamiliar words from novel sequences (Bortfeld et al.,
2005).

Undersegmented chunks, in summary, are a plausible by-
product of the segmentation process. In the current study, we
ask which types of chunks children initially extract from speech.
In language development, frequent items are generally learned
before less frequent items (Ambridge et al., 2015), and one could
thus expect children to preferentially extract and store frequent
chunks. Support for the role of frequency during segmentation
comes from findings that 8-month-olds can detect words within
fluent speech on the basis of their frequency (Jusczyk and Aslin,
1995), and 11-month-olds are sensitive to highly frequent syllable
sequences that span word boundaries as well as highly frequent
disyllabic nonsense words (Ngon et al., 2013). While this does
not necessarily mean that children store all frequent speech
sequences as chunks, it nevertheless implies that frequency could
be a major determinant in whether or not a given sequence is
stored.

Perhaps, however, frequency is less important than the
perceived unity of a given syllable sequence. That is, perhaps
children store syllable sequences which appear to form a discrete
unit and cannot, for all intents and purposes, be segmented into
smaller units, such as words or morphemes. For example, we
can reasonably expect that short sequences are more likely to
correspond to words ormorphemes than longer sequences. Thus,
if children store chunks as hypothesized words or morphemes,
perhaps they simply store uninterrupted speech sequences that
happen to be particularly short.

Another argument for why children should favor shorter
sequences is based on memory limitations. MacWhinney (1978,
2014) proposes, in the context of item-based learning theory,
that restrictions on children’s memory capacity should prevent
them from fully storing (most) uncomprehended sequences;
and that they might only store particularly short chunks—e.g.,
2- or 3-word sequences—as single lexical items. This proposal
alleviates concerns having to do with memory limitations and
would seem to constitute a fruitful learning strategy for children
to pursue, given that parental utterances tend to be relatively
short (Saxton, 2010). Indeed, MacWhinney (2014) reports that
close to a quarter of parental utterances in a corpus of English
child-directed speech (containing approx. 500,000 words) are
single-word utterances.

Thus, one of the claims of item-based learning is that
children begin to acquire linguistic knowledge by extracting
short speech sequences as unsegmented chunks. They can then
discover novel words by splitting known items from stored
chunks (MacWhinney, 1978, 2014). When a newly segmented
word corresponds to a predicate—e.g., your, as in Where

are your pajamas?—, the child may notice that the meaning
she has assigned to the predicate only makes sense if it is
combined with an argument. Here, the possessive meaning of
your requires an argument that corresponds to the object being
possessed. Based on the particular utterance within which your
was encountered, this would prompt the child to acquire the
item-based pattern your + pajamas; and as she encounters the
predicate in conjunction with other words, the pattern would
broaden to accommodate a range of possible words (your +
object).

Item-based learning, then, posits that children’s early lexical
and syntactic development is derived from short input sequences,
as novel words and new syntactic patterns are both acquired from
short chunks. From this point of view, we should expect children
to be biased toward storing particularly short chunks—and not
necessarily frequent or internally predictable sequences.

Alternatively, given that TPs are an early segmentation cue
(Saffran et al., 1996; Aslin et al., 1998; Thiessen and Saffran,
2003), children might extract and store sequences whose syllables
are especially mutually predictive—even if the entire syllable
sequence is relatively long or infrequent. Syllable sequences
presumably exist along a spectrum of predictability, with some
consisting of syllables that always and only occur with one
another, while others have a more variable internal structure. If
the goal of segmentation is the discovery indivisible units, then
sequences with stronger internal predictability might be more
likely to be considered as hypothesized words or morphemes—
and therefore to be stored as chunks.

2. GOAL AND METHOD

We consider the following research question: When extracting
undersegmented chunks from speech during first language
acquisition, are children more likely to extract (a) frequent,
(b) internally predictable, or (c) short syllable sequences? We
investigate (a) because frequent items, being acquired before
less frequent exemplars (Ambridge et al., 2015), may simply be
associated with a general learning advantage. We chiefly examine
(b) and (c), on the other hand, because children might be biased
to extract discrete linguistic units from unsegmented input; and
short or predictable sequences, in contrast to frequent items,
should have a higher chance of corresponding to such units.

Before answering the core research question, we first attempt
to verify the assumption that short and predictable MSUs are
more word-like than frequent MSUs. This is done by selecting
various sets of multi-syllable utterances (MSUs) from the input
English-speaking children typically receive. We refer to these
as chunk sets—selections of uninterrupted syllable sequences
which children could potentially store as chunks. If we are
correct in assuming that short and internally predictable MSUs
are more word-like, we should find that chunk sets with short
and predictable MSUs are better-suited for selecting single-word
utterances than sets with frequent MSUs.

After examining which types of chunk sets contain more
words, we evaluate the likelihood that children store the MSUs
in a given chunk set as unanalyzed units. One difficulty with
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devising such a method is that chunks might only be stored for
brief periods and might only rarely be produced, if children use
them at all. Because of this, methods for tapping into the chunk
vocabulary of children should not rely on child productions.
Instead, we evaluate MSUs according to how well they perform
at predicting when their constituent words are learned.

This method has previously been introduced by Grimm et al.
(2017), who used an existing computational model (McCauley
and Christiansen, 2014) to extract multi-word phrases from
corpus data. Extracted phrases were used to predict the
developmental stage at which children learn to produce the words
contained within them. For this purpose, the incidence of the
phrases containing each word was determined and correlated
with the developmental stages at which children first produce
the words. The correlation is negative, even when controlling for
the frequency of words—i.e., words contained in many different
phrases tend to be learned earlier than words contained in fewer
phrases.

By way of explanation, Grimm et al. (2017) refer to
segmentation: If phrases are stored as chunks, it should be
easier to identify words contained in a large number of
phrases, relative to words contained in fewer phrases. This
would follow from an approach to word segmentation wherein
the comparison of stored chunks leads to the detection
of common sub-sequences—an idea that was introduced in
item-based learning, where children split known items from
unsegmented sequences (MacWhinney, 1978, 2014); and that is
subsequently discussed in Peters (1983)’s work, who refers to it as
phonological matching.

Assuming phonological matching, encountering a particular
sub-sequence within many chunks could be advantageous in at
least two ways: (1) Finding a particular sub-sequence within
many different chunks might strengthen its hypothesized status
as an independent unit; and (2) the more chunks contain a given
word, the greater the chance that units which are encountered
in the future can be split from one of those chunks—a strategy
infants could, in principle, use during segmentation (Bortfeld
et al., 2005).

Expanding on this, we evaluate chunk sets according to
how well included MSUs perform at predicting the age at
which children first produce the words contained within them.
MSUs which are stored as chunks should perform well, whereas
those that are never stored should perform poorly. Thus,
whole-sequence frequency will be implied as a determinant of
chunkhood to the extent that chunk sets containing frequent
MSUs can predict when their component words are learned;
syllabic predictability will be implied to the extent that internally
predictableMSUs predict word learning; and sequence length will
be implied to the extent that chunk sets with short MSUs predict
word learning.

3. ANALYSIS I: CHUNK SELECTION

In this analysis, we describe the method used to select chunk
sets, which we define as subsets of the MSUs found in English
child-directed speech. Our method involves ranking MSUs by

(1) syllable length, (2) syllable predictability, and (3) frequency—
followed by selecting the top N MSUs from each ranking.

3.1. Method
To select chunk sets from English child-directed speech (CDS),
we rely on three properties: (1) the overall frequency of MSUs
in CDS, (2) their length in syllables, and (3) the average
predictability of adjacent syllables. Given a set of MSUs from
a corpus of CDS, we rank MSUs by (1)–(3), and we select the
top N items from each ranking. MSUs are ranked from most to
least frequent, from shortest to longest, and from most to least
predictable. We thus obtain three chunk sets—corresponding
to the N most frequent, N shortest, and N most internally
predictable MSUs.

3.1.1. Corpora
We extract MSUs from transcribed CDS, which differs markedly
from the speech used by adults to address other adults. Among
other things, CDS consists of shorter phrases, contains more
pauses, and is composed of a more limited vocabulary (Saxton,
2010). Its properties appear to facilitate word segmentation and
word learning (Thiessen et al., 2005; Yurovsky et al., 2012),
making it the obvious corpus choice. We obtain CDS samples
from various corpora of transcribed speech exchanged between
caretakers and young children, taken from the CHILDES
database (MacWhinney, 2000a). A typical corpus consists of
various transcripts based on interactions (e.g., reading a book,
playing a game) involving a child or group of children and
their caretakers. Given that individual corpora contain at most
a few hundred thousand words, we collapse various English
CHILDES sources into a North American corpus (NA corpus)
and a British English corpus (BE corpus)7. Since most corpora in
the CHILDES database are transcribed at the word level, whereas
we are interested in processes which precede the segmentation
of speech into words, we syllabify all corpora—motivated by the
observation that neonates and infants perceive speech in terms of
syllables (Bertoncini andMehler, 1981; Jusczyk andDerrah, 1987;
Bijeljac-Babic et al., 1993). We convert each word to a syllable
representation by relying on a syllabified version of the Carnegie
MellonUniversity (CMU) pronouncing dictionary (Bartlett et al.,
2009)8. We keep only those utterances whose words have an
entry in the CMU dictionary. About 80% of utterances survive
this syllabification process. Table 1 summarizes other relevant
statistics.

3.1.2. Possible Chunks
We consider full utterances from CDS as possible chunks,
i.e., as syllable sequences from which to select chunk sets.
Sampling smaller sequences would require mechanisms for
decomposing utterances and could confound the results. For
example, a decomposition based on TPs would pre-suppose that
children prioritize syllable predictability when extracting chunks
from speech. Working with full utterances avoids this problem.
Moreover, the storage of utterances presents an easy solution
to Peters (1983)’s initial extraction problem: If children have

7See the Supplementary Material, Appendix A, for a list of included corpora.
8http://webdocs.cs.ualberta.ca/~kondrak/cmudict.html
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TABLE 1 | Child-directed speech statistics.

Measure BE NA

# adult speakers 280 737

# children addressed 247 743

mean child age (months) 32.66 (SD = 9.25) 41.39 (SD = 23.45)

# utterances 1,467,445 1,319,102

mean utterance length (words) 4.55 (SD = 3.69) 4.46 (SD = 3.46)

# tokens 6,690,453 5,890,443

# types 49,206 35,699

# syllabified utterances 1,190,858 1,083,618

mean utterance length (words) 4.42 (SD = 3.45) 4.08 (SD = 3.09)

# syllabified tokens 5,266,479 4,428,993

# syllabified types 19,931 14,156

no knowledge about linguistic units, the most straightforward
hypothesis is to consider uninterrupted stretches of speech as
potential units. We thus consider MSUs from CDS as candidates
for inclusion in chunk sets.

However, to lessen the probability that included utterances
are not idiosyncratic to particular child-caretaker dyads, we
require that MSUs are produced by adults from at least two
different CHILDES corpora. This reduces the number of available
utterances, in the BE and NA corpus, from more than 1,000,000
to about 50,000 each. The reason for this fairly drastic step
lies in the nature of our corpus material: Because we collapse
data from a large number of different CHILDES corpora (10
for the BE and 41 for the NA corpus), with hundreds of child
and adults speakers, most MSUs will not form part of the input
received by the children addressed in the different corpora.
For example, the BE corpus contains the adult-produced MSU,
On Wednesday he ate through three plums. Unsurprisingly, this
MSU is only used once, to address a particular child, in a
situation that is unlikely to occur with any of the other children
whose input we are considering. Because of this, it would not
make sense to include it as an utterance that children could,
in general, store as an undersegmented chunk. Thus, to reduce
the likelihood that such idiosyncratic MSUs are included in
the aggregated BE and NA corpora, we filter MSUs by the
number of individual CHILDES corpora within which they
occur—requiring them to be used, on independent occasions,
by caretakers from at least two of the (41 + 10 = 51) CHILDES
corpora.

Furthermore, given that we consider the syllable as a primitive
unit, single-syllable utterances are already fully segmented and
cannot be considered as undersegmented chunks. For this
reason, we require that the utterances included in chunk sets
contain at least two syllables (i.e., we consider multi-syllable
utterances/MSUs). Finally, to control for repetition, we exclude
MSUs that consist of repeated occurrences of a single word.
The three criteria (more than one syllable, no repetitions,
used in at least two CHILDES corpora) are met by 50,199
MSUs in the BE corpus and by 57,151 MSUs in the NA
corpus.

3.1.3. Selection of Chunk Sets
From the available MSUs, we wish to select the N most frequent,
N shortest, andN most internally predictable items as chunk sets.
We thus need to fix the size of each chunk set to some N, where
N must be smaller than the number of all MSUs. Otherwise, there
would only be one chunk set, and it would contain all MSUs.
Given someN, we then select MSUs according to their frequency,
their length in syllables, and the mutual predictability of their
syllables. We determine frequency by counting how often MSUs
appear in CDS, length by counting the number of syllables in
each MSU, and predictability by averaging over the conditional
probabilities between adjacent syllables.

More formally, each syllable ui within the MSU u1, u2...un can
be associated with a set Pi of conditional probabilities:

Pi =











{p(ui|ui−1), p(u|ui+1)} if i > 1 ∧ i < n

{p(ui|ui−1)} if i > 1 ∧ i = n

{p(ui|ui+1)} if i = 1 ∧ i < n

The predictability score of a given MSU is then defined as
the average of the conditional probabilities associated with
the syllables in a given MSU. This definition is inspired by
the oft-replicated finding that infants are sensitive to the TPs
(conditional probabilities) between syllables (Saffran et al., 1996;
Aslin et al., 1998; Thiessen and Saffran, 2003), suggesting that
the local predictability of syllables within sequences is an early
segmentation cue.

At this point, N is an obvious tweakable parameter. As
mentioned, N must be smaller than the number of available
MSUs. Otherwise, the only chunk set would contain all MSUs,
and we would not be able to distinguish between especially
frequent, short, or internally predictable MSUs. At the same time,
N should not be extremely small either. For example, it would not
make sense to set N = 1. But even values in the tens or hundreds
might not be sufficiently large. Since we wish to predict the age at
which words are learned from the number of MSUs within which
these words are contained, it would be good to operate with
fairly large chunk sets, to ensure that a majority of target words
will in fact appear within some MSU. For the current illustrative
purpose, we set N=10,000. In subsequent analyses, however, we
report results for many possible choices of N.

3.2. Results and Discussion
To illustrate the chunk set selection procedure, we focus on
example sets from the BE corpus—consisting of the N = 10,000
shortest MSUs, the N most frequent MSUs, and the N most
predictable MSUs. Table 2 summarizes statistics pertaining to
the three sets. As expected, the average syllable count of the N
shortest MSUs is lowest; the average frequency count of the N
most frequent MSUs is highest; and the average predictability
score the of N most internally predictable MSUs is largest.
Overlap between the three sets is limited to below 30%, indicating
that the chunk sets contain fundamentally different types of
MSUs.
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TABLE 2 | Statistics for chunk sets with the N = 10,000 shortest, most frequent,

and most predictable MSUs.

Chunk set Short Frequent Predictable

Mean frequency 18 (SD: 212) 31 (SD: 220) 13 (SD: 179)

Mean predictability 0.10 (SD: 0.14) 0.15 (SD: 0.13) 0.30 (SD: 0.09)

Mean length (syllables) 2.36 (SD: 0.48) 3.73 (SD: 1.45) 4.42 (SD: 1.61)

Overlap with shortest – 28.6% 15.49%

Overlap with most frequent – – 25.5%

Overlap with most predictable – – –

The largest value in each column are given in bold-face.

Table 3 contains example MSUs from each chunk set9. The
most predictable MSUs (e.g., brilliant, breakfast) correspond
to syllable sequences whose component syllables, if they do
occur, have a high chance of occurring within the given
MSUs. For example, the syllable corresponding to brill- occurs
only to the left of the syllable corresponding to -iant, and
the syllable corresponding to -iant occurs only to the right
of the syllable corresponding to brill-. This means that the
conditional probabilities associated with the two syllables are
both 1.0, leading to a 1.0 average predictability score for
brilliant. Strikingly, the 15 most internally predictable MSUs all
correspond to individual words—with both very high and very
low frequency counts.

The 15 most frequent MSUs, on the other hand, include
single words (e.g., okay) and idiomatic sounding multi-word
utterances (e.g., oh dear, I don’t know). The much lower
predictability scores associated with these MSUs indicate that
their syllables are less strongly tied to one another: Even
though MSUs such as I don’t know are frequently used, the
syllables corresponding to I, don’t and know are also frequently
used in MSUs other than I don’t know. The shortest MSUs,
finally, correspond to both disyllabic words (e.g., quiet, window)
as well as disyllabic multi-word utterances (e.g., stop there).
Since these MSUs are only selected according to length in
syllables, their frequency counts and predictability scores are
quite variable.

4. ANALYSIS II: WHICH MULTI-SYLLABLE
UTTERANCES CORRESPOND TO SINGLE
WORDS?

In considering frequent, predictable, and short MSUs, we
have been assuming that the latter two MSU types are more
word-like than the former. The previous analysis certainly
suggests that the most internally predictable MSUs are more
word-like than the most frequent MSUs—with the top 15
predictable items all corresponding to single-word utterances

9For readability, each MSU is presented in its orthographic transcription. But note

that in our experiments, MSUs are represented as unsegmented syllable sequences.

For example, the orthographic transcription that’s wonderful is underlyingly

represented as thats1-won1-der0-ful0 (1 = primary stress, 2 = secondary stress, 0

= no stress).

TABLE 3 | Top 15 MSUs from chunk sets containing the (1) N shortest, (2) N most

frequent, and (3) N most internally predictable MSUs.

N shortest N most frequent N most predictable

MSU freq pred MSU freq pred MSU freq pred

More bricks 9 0.03 Okay 12,101 0.57 Vampire 3 1.00

Push out 1 0.00 Uhu 7,613 0.98 Brilliant 317 1.00

Nice tea 2 0.00 That’s right 7,474 0.20 Breakfast 30 1.00

Quiet 23 0.86 Pardon 5,033 0.75 Trowel 4 0.99

Stop there 3 0.00 That’s it 4,823 0.08 Uhu 7,613 0.98

A leg 2 0.02 Come on 4,734 0.31 Grandad 35 0.97

Bread yeah 1 0.00 Oh dear 4,697 0.46 Children 13 0.96

Train what 2 0.00 What’s that 3,747 0.19 Fraser 1,627 0.96

Left eye 2 0.00 Thank you 3,002 0.51 Nonsense 4 0.96

Right back 3 0.00 Oh no 2,945 0.04 Hello 1,680 0.95

London 15 0.49 Good girl 2,293 0.36 Jigsaw 15 0.95

Red bear 2 0.00 There you go 2,262 0.10 Hungry 6 0.94

What room 1 0.00 I don’t know 2,248 0.19 Costume 4 0.94

The farm 2 0.21 What is it 2,225 0.13 Husband 1 0.94

Window 20 0.81 Is it 2,151 0.20 Croissant 10 0.94

(cf. Table 3). It is possible, however, that the top 15 MSUs
are special cases, with fewer single-word utterances among
the MSUs further down the rank distribution. In the current
analysis, we use a more rigorous method to determine
which of the three metrics (syllable length, frequency, or
syllabic predictability) is best-suited for selecting MSUs that
correspond to single words. If our initial assumption is
correct, MSU length and syllabic predictability should be better-
suited for selecting single-word MSUs than whole-sequence
frequency.

4.1. Method
Any method used to establish which of the three metrics is
most useful for selecting single-word MSUs should address
two key issues: (1) the need for an appropriate performance
metric, and (2) the potentially confounding effect of the
tweakable parameter N (chunk set size). We address both issues
below.

4.1.1. Classification Metrics
Wewould like to quantify whether different types of chunk sets—
i.e., subsets of the available MSUs—are well-suited for selecting
single-wordMSUs. In the best case, a given chunk set will contain
all and only single-word MSUs; and in the worst case, it will not
contain any single-word MSUs. We can thus frame the selection
of chunk sets as a classification task, where MSUs included in a
particular chunk set are classified as words, and excluded MSUs
are classified as non-words.

To quantify classification performance, we use a precision and
a recallmetric: the proportion of words contained within a given
chunk set, and the proportion of words correctly selected out of
all available words. More formally, letN be the chunk set size,WC

the number of words within the chunk set, and W the number
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of words outside of the chunk set. Precision and recall are then
defined as follows:

Precision =
WC

N
(1)

Recall =
WC

WC +W
(2)

Precision equals 1.0 if and only if the chunk set contains only
single-word MSUs, and recall equals 1.0 if and only if the
chunk set contains all available single-word MSUs. A chunk
set that contains all and only single-word MSUs will thus lead
to maximum precision and recall. To quantify the notion that
well-performing chunk sets should maximize both precision and
recall, we track overall classification performance via the F-score,
defined as the harmonic mean of precision and recall (a measure
of classification performance commonly used in computational
linguistics and studies investigating speech segmentation in
children—see e.g., Goldwater et al. (2009) and the references
therein). While we do not expect to achieve maximum scores
with our chunk sets, we nevertheless expect to obtain informative
differences between classification outcomes.

4.1.2. Effect of Chunk Set Size
N (chunk set size) could in principle take any value between
1 and the total number of MSUs (50,199 for the BE corpus
and 57,151 for the NA corpus). Crucially, robust results should
emerge across all choices of N—excluding only large and small
values. Large values close to the number of all available MSUs
should lead to similar result for the three chunk sets, since each
set will contain the same selection of MSUs. But N should not
be too small either: The BE and NA corpus contain 1,856 and
2,159 single-word MSUs, respectively, and chunk sets containing
fewer MSUs cannot maximize recall. However, as long as N is
neither too small nor close to the number of all MSUs, we should
see similar results. We examine this by calculating classification
performance for various N.

4.1.3. Statistical Analysis
We calculate 95% percent confidence intervals for precision,
recall, and F-score via statistical bootstrapping (Davison and
Hinkley, 1997), with each bootstrap based on 100 random
samples with replacement, and a sample size equal to the number
of data points.

For example, consider a chunk set of sizeN = 10, 000, selected
from the 50,199 MSUs in the BE corpus. In this case, each of
the 10,000 MSUs included in the chunk set is assigned a word
label, and the remaining 40,199 MSUs are labeled as non-words.
To bootstrap confidence intervals for the three classification
metrics, we first take a random sample (with replacement)
of 50,199 MSUs (all available data points). Next, we calculate
precision and recall for this sample, based on the labels assigned
during the classification step. By repeating this procedure 100
times, we obtain a normal distribution of classification metrics—
and their 95% confidence intervals correspond to the range
between the 2.5th and the 97.5th percentiles. When comparing
metrics derived from two different chunk sets, we bootstrap 95%
confidence intervals for the difference between them. If zero

is not contained within this interval, we can claim with 95%
certainty that the difference is not due to chance.

4.2. Results and Discussion
We compare classification metrics associated with three different
chunk sets—containing either the shortest, the most frequent,
or the most internally predictable MSUs. This design yields
three pairwise comparisons of chunk sets: (1) shortest vs. most
frequent, (2) shortest vs. most predictable, and (3) most
predictable vs. most frequent—each conducted for three metrics
of classification performance (precision, recall, F-score), using
chunk sets taken from two corpora of English CDS (the BE
and the NA corpus). The comparisons are summarized, in turn,
by Figures 1–3 below. Each figure plots, as a function of N,
classification performance for two different chunk sets, as well
as the difference between performance scores. On the x-axis, we
increment N in steps of 1,000—beginning at N = 1, 000 and
ending at the maximum possible chunk set size.

Figure 1 shows classification performance for chunk sets
containing theN shortest and theN most frequent MSUs. Across
both corpora, precision is highest at N = 1, 000, where it is
just above 0.2 for the shortest and between 0.1 and 0.15 for the
most frequent MSUs. That is, ca. 20% of the shortest 1,000 MSUs
correspond to single words, while the same is true for only 10–
15% of the most frequent MSUs. Precision then decreases with an
increasing chunk set size—to about 15% and 8% at N = 10, 000,
and to ca. 7% and 4% at N = 25, 000. At N = 50, 000, the two
chunk sets each contain almost all available MSUs, so precision
scores derived from either set are very close to one another.
However, until the chunk sets contain approximately half of the
available MSUs, precision is clearly higher for the N shortest
MSUs, with the scores approaching each other as N is further
increased.

Recall increases rather than decreases over successive chunk
set sizes. This is because recall can be maximized, at the cost of
low precision, by assigning the word label to every MSU. Thus,
at N = 50, 000, recall is close to 1.0 for both chunk sets (i.e.,
they each contain close to 100% of single-word MSUs) simply
because they contain almost all available MSUs, while precision
is close to zero (i.e., the proportion of selected single-word MSUs
is very low). Conversely, at N = 1, 000, recall is minimized,
while precision is maximized. Thus, smaller chunk sets contain a
large proportion of words, but the majority of single-word MSUs
remains undetected. Crucially, with the exception of chunk sets
close to the maximum possible size, recall is generally higher for
short rather than frequent MSUs.

The harmonic mean of precision and recall (F-score) is
maximized atN ≈ 10, 000 (short MSUs≈ 0.25; frequent MSUs≈
0.15). Generally, chunk sets containing short rather than frequent
MSUs translate into significantly higher F-scores. The difference
begins to disappear at around 25, 000, reflecting the fact that as we
increase the size of chunk sets, the MSUs contained within them
tend to overlap more. As long as we focus on small N, however,
chunk sets containing short MSUs are clearly better-suited for
selecting words.

When comparing short to internally predictable MSUs
(Figure 2), we find that very small chunk sets with predictable
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FIGURE 1 | Bottom of each subplot: classification performance for the N shortest (green line) and N most frequent MSUs (blue line), with 95% confidence intervals.

Top: difference between green and blue line, with 95% confidence intervals. (A) Chunk sets taken from the BE corpus. (B) Chunk sets taken from the NA corpus.

MSUs (N = 1, 000 and N = 2, 000) contain a noticeably larger
amount of single-word MSUs than equally sized chunk sets with
frequent MSUs (50% vs. 10–15% at N = 1, 000; 20% vs. 12–
15% at N = 2, 000). At N = 1, 000, predictable MSUs also
yield slightly better recall; but almost all subsequent chunk sets
capture a much larger proportion of the available single-word
MSUs if they are selected according to syllable length rather
than predictability. This is reflected in the F-score, which is
significantly higher for short MSUs, as long as N is not too small
or too large. Generally, then, chunk sets containing short rather
than predictable MSUs tend to be better-suited for selecting
utterances corresponding to individual words.

The only exception to this comes in the form of the 1,000–
2,000 most predictable MSUs, which tend to be words more
often than their counterparts in equally sized chunk sets with
short MSUs. One possible explanation for this pattern is that
our predictability metric picks up on low-frequency words, with
syllables that occur in only a handful of syllabic contexts, leading
to relatively high conditional probabilities for MSUs containing
such syllables. But the most predictable MSUs include both low-
frequency words (e.g., vampire, husband, costume), as well as
more common words such as hello or brilliant (cf. Table 3).
Moreover, the average frequency of the 1,000 most predictable
MSUs (62 in the BE corpus, 67 in the NA corpus) is actually higher

than the average frequency of the 1,000 shortest MSUs (26 in
the BE corpus, 15 in the NA corpus)—demonstrating that highly
predictable MSUs are not all low-frequency items.

In the last remaining comparison (predictability vs. frequency,
Figure 3), the high classification performance of small sets
containing predictable MSUs exceeds the performance associated
with (small) sets of frequent MSUs. Unlike MSU length, whole-
sequence frequency is not associated with particularly high
recall scores—and larger chunk sets containing frequent MSUs
perform, at best, only slightly better than (larger) chunks sets of
predictableMSUs. On the whole, predictability thus wins out over
frequency.

Syllable length—chiefly due to high recall—in turn won
out over predictability (Figure 2) and clearly lead to better
performance than frequency (Figure 1). Ordered from worst to
best classification performance, that is, we obtain the following
ranking: (1) frequency, (2) syllabic predictability, (3) length in
syllables. Of course, a small number of constituent syllables does
not guarantee that a givenMSU will in fact correspond to a single
word. But by and large, selections of short MSUs are better-suited
for picking out single-word utterances than either frequent or
internally predictable MSUs.

This verifies our initial assumption that whole-sequence
frequency is a poorer indicator of wordhood than either sequence
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FIGURE 2 | Bottom of each subplot: classification performance for the N shortest (green line) and N most internally predictable MSUs (red line), with 95% confidence

intervals. Top: difference between green and red line, with 95% confidence intervals. (A) Chunk sets taken from the BE corpus. (B) Chunk sets taken from the NA

corpus.

length or syllabic predictability. In the following analysis, we
investigate which of the three MSU types are most likely to be
stored, during early speech segmentation, as undersegmented
chunks.

5. ANALYSIS III: WHICH MULTI-SYLLABLE
UTTERANCES BEST PREDICT THE AGE
OF FIRST PRODUCTION OF WORDS?

In the previous analysis, we examined whether short, frequent, or
predictable MSUs are more likely to correspond to single words.
Now, we evaluate how well the three different types of MSUs
predict the age at which their component words are acquired,
arguing that MSUs which are well-suited for predicting word
learning are also more likely to be stored as undersegmented
chunks. Since frequency of occurrence seems to confer a general
learning advantage (Ambridge et al., 2015), children might
preferentially store frequent MSUs as chunks. It is also possible,
however, that children are biased to extract and store more
discrete, word-like MSUs. If true, we should expect children
to store short and possibly internally predictable MSUs, to the
exclusion of more frequent items.

5.1. Method
Following Grimm et al. (2017), we use the MSUs in a particular
chunk set to predict the age at which children first produce the
words contained within the MSUs. Grimm et al. (2017) found
that words which are contained in a large number of multi-
word phrases are produced at earlier stages than words contained
in fewer phrases. As a possible explanation, they argued that
children commit phrases to long-term memory as holistic
chunks—i.e., before they have discovered that the phrases are
composed of smaller linguistic units. As a result, the more chunks
containing a particular word X are stored in long-term memory,
the higher the likelihood that children discover X as a separate
linguistic unit—and the earlier they subsequently produce X.
We thus evaluate how well the MSUs from different chunk sets
perform at predicting the age of first production (henceforth
AoFP) of their component words. If children store frequent
MSUs as chunks—prior to having detected the words contained
within those chunks—, then frequent MSUs should perform best.
Conversely, if they store short or internally predictable MSUs,
short or predictable MSUs should perform best.

We implement this idea by using AoFP as a dependent
variable inmultiple linear regressions. Given a chunk set and a set
of words with associated AoFP values (henceforth target words),
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FIGURE 3 | Bottom of each subplot: classification performance for the N most internally predictable (red line) and N most frequent MSUs (blue line), with 95%

confidence intervals. Top: difference between red and blue line, with 95% confidence intervals. (A) Chunk sets taken from the BE corpus. (B) Chunk sets taken from

the NA corpus.

we count—for each target word—how many MSUs within the
chunk set contain it. The resulting value, the number ofMSUs per
target word (henceforth #MSU), is then used as an independent
variable. We denote this measure #MSU-F when calculated based

on the N most frequent MSUs, #MSU-S when calculated based
on the N shortest MSUs, and #MSU-P when calculated based on
the N most predictable MSUs. Thus, by using #MSU-F, #MSU-S,
and #MSU-P to predict AoFP, we evaluate how well the shortest,

most frequent, and most predictable MSUs perform at predicting
the time course of word learning. If children store short MSUs as
chunks, then #MSU-S should perform best at predicting AoFP;
if they store frequent MSUs, #MSU-F should perform best; and

if they store predictable MSUs, #MSU-P should emerge as the
best-performing predictor.

To evaluate performance, we track two statistics: (1) the

regression coefficient (β), measuring how strongly the AoFP of

targets decreases as we increase #MSU; and (2) the amount of
variance within AoFP that can be accounted for by including
#MSU in the regression models (R2). We expect that a robust
result should lead to comparable effects across the two statistics.
For example, if words contained within predictable MSUs are
learned earlier than words contained within frequent or short
MSUs, words with high #MSU-P counts should be learned earlier
than words with high #MSU-F or #MSU-S counts—and this

should be reflected in stronger effects, across the two statistics,
for #MSU-P.

5.1.1. Age of First Production
Selecting suitable AoFP data is critical, as the procedure used to
obtain AoFP estimates could confound the results. Specifically,
children might produce chunks without having learned about
the words within them. We should make sure, in other words,
that AoFP estimates are based on word productions which are
not performed in the context of the MSUs used to predict AoFP.
We control for this in the first of two AoFP data sets, which we
estimate from the children addressed in the two CDS corpora.
And to ensure the robustness of these corpus-derived AoFP
estimates, we replicate our results on an existing data set derived
from parent-report questionnaires.

5.1.1.1. Corpus-derived AoFP
The first AoFP data set is estimated from the transcribed speech
of the children addressed by the caregivers in the two aggregated
CHILDES corpora10. Here, we treat a word as having been
acquired at the earliest developmental stage at which any child
within a corpus produces it. In doing so, we only consider word

10See the Supplementary Material, Appendix B, for additional information on

the corpus material used to estimate AoFP.
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productions from outside of (any and all) adult-produced MSUs.
For example, if a child produces the word day as part of the adult-
produced MSU what a great day,we do not consider the child
production. Further, we do not consider word productions if
the words are produced within sub-sequences of adult-produced
MSUs (with the exception of single-word sub-sequences, i.e.,
target words produced in isolation). We would not, that is,
consider child productions like it’s a great day, since a great day
is a sub-sequence of what a great day. Corpus-derived AoFP thus
is a conservative estimate, where a given word is considered as
learned at the earliest developmental stage at which any child
first produces it—in a context without overlap with the adult-
produced MSUs11.

Developmental stage is defined in terms of mean length
of utterance (MLU)—the average child utterance length, in
tokens, within a transcript (CHILDES corpora consist of
transcripts, recorded at different points during the target child’s
development). We induce MLU rather than AoFP estimates
because children who are close in age may nevertheless be far
apart in language development. Being a more robust estimator,
MLU controls for developmental differences (Parker and
Brorson, 2005). Since transcripts contain varying numbers
of utterances, the average utterance length per transcript is
biased with respect to transcript length. We rectify this issue by
estimating MLU for each transcript via statistical bootstrapping
(Davison and Hinkley, 1997). Each bootstrap is based on 10,000
random samples with replacement, with the sample size equal to
the number of child utterances per transcript. We thus induce
MLU rather than AoFP estimates but will, for simplicity, refer
to a word’s MLU as its AoFP. To calculate an estimate for a
given word, we bootstrap the set of MLUs γ for all transcripts
within which a child uses the word outside of an adult-produced
MSU, and we choose the smallest value in γ as the word’s AoFP.
Performing this procedure for all words produced by children
in at least two of the considered CHILDES corpora, we obtain
AoFP estimates for the aggregated BE and NA corpus—covering
7,565 and 9,482 different child-produced words.

5.1.1.2. CDI-derived AoFP
The corpus-derived AoFP estimates are sensitive to high-
frequency words, making it desirable to replicate results on data
that do not rely on language sampling. We obtain such AoFP
estimates from the wordbank database (Frank et al., 2017)12,
a repository with results from parent-report questionnaires
(MacArthur–Bates Communicative Development Inventories /
CDI). Wordbank archives data from various administrations
of the CDI. The largest English data set pools responses from
parents of 6,945 (American) English-speaking children between
the ages of 16 and 30months and covers 680 words and phrases.13

11This way of measuring first productions is extremely conservative and could

potentially confound the results. For this reason, we made sure that results of the

regression analyses, reported below, are similar if AoFP is simply defined as first

use. We also made sure that the different AoFP data sets are strongly correlated

with one another (see correlation coefficients reported below).
12Available online: http://wordbank.stanford.edu/
13Data were downloaded on 01/08/2018.

At each of the 15 months covered by the questionnaires, parents
had to indicate whether their child produces a list of words.
Word-level data are then represented as the percentage of parents
who reported, for a given month, that their child can successfully
produce the word in question. Excluding compounds, phrases,
and words that are specific to particular children (baby sitter’s
name, child’s own name, pet’s name), we derive AoFP estimates
for 647 words by counting words as having been learned if at least
50% of the children were reported to produce it. Due to the design
of the CDI, we cannot rule out that parents reported on child
productions of chunks instead of individual word productions.
Corpus-derived AoFP, which controls for chunk productions,
is thus of primary importance. And to increase confidence in
the robustness of results, CDI-derived AoFP is used to replicate
results achieved with the former.

Since the children whose parents filled in the CDI forms were
no older than 30 months, we restrict the MSUs included in chunk
sets for the analyses with CDI-derived AoFP—considering only
MSUs which were produced in the presence of children aged 30
months or less.

5.1.2. Validity of AoFP Estimates
It would raise methodological concerns if we simply assumed
the validity of corpus-derived AoFP. The CDI-derived estimates,
on other hand, have been validated on different measures of
children’s expressive vocabularies (Dale, 1991; Fenson et al.,
2007). This is why we include CDI-derived estimates, and why it
is important that similar results are obtained with both data sets.
To further increase our confidence in both types of estimates,
we compare them to the only publicly available English age of
acquisition estimates that come directly from children: Morrison
et al. (1997) had children of varying ages perform a picture
naming task; and if a child was able to produce the correct picture
name, he or she was considered to have acquired the word.

Presumably because of time constraints, Morrison et al.
(1997) provide age of acquisition for a restricted set of 297
picturable nouns. While insufficient for our analyses, we can still
use their data to verify our estimates: The correlation between
their estimates and corpus-derived AoFP is strongly positive
(Spearman’s rho = 0.65 for the BE children and rho = 0.59
for the NA children, based on 274 and 272 shared words,
respectively; p < 10−8 ). The correlation with CDI-derived AoFP
is also fairly strong (rho = 0.50, based on 117 shared words, p <

10−8). This pattern strengthens our confidence in the validity of
(corpus- and CDI-derived) AoFP estimates.

5.1.3. Co-variates
The independent variable is #MSU, which we use to predict
AoFP. Grimm et al. (2017) found that a similar predictor is
negatively correlated with AoFP, leading us to also expect a
negative correlation between #MSU and AoFP (meaning that
words contained in many MSUs would be learned earlier than
words contained in fewer MSUs). But such a correlation could
be due to collinearity with several co-variates, the most obvious
of which is word frequency. Frequency of exposure is associated
with a general learning advantage (Ambridge et al., 2015),
and words with a high #MSU count tend to be frequent.
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Grimm et al. (2017) controlled for frequency, but there are other
possible confounds.

We attempt to remedy this by including the following co-
variates: (1) the corpus frequency, in CDS, of each target word
(Freq), (2) concreteness ratings (Con), (3) length in syllables
(Nsyl), and (4) phonological neighborhood density (PhonN)14.
Freq must be included to control for frequency of exposure, and
Con is included to control for semantic properties of target words.
Nsyl and PhonN, meanwhile, are meant to control for confounds
having to do with the phonological properties of target words.
Concreteness ratings for 40,000 lemmas are taken from Brysbaert
et al. (2014)15, who collected them from over 4,000 participants
via Mechanical Turk. Since ratings were collected for lemmas,
we assigned the lemma rating to all its word forms. Given a
target word, PhonN is defined as the number of homophones,
plus the number of words that can be derived from the target
by either adding, deleting, or substituting a single phoneme.
PhonN, together with Nsyl, is derived from the syllabified CMU
pronouncing dictionary that was also used to convert our corpora
to syllable representations. Braginsky et al. (2016) have recently
shown that variables similar to Freq, Con, and Nsyl predict
age of acquisition: Early-acquired words tend to be frequent,
concrete, and (at least in English) short. We additionally include
PhonN, as words in dense neighborhoods tend to be early-
learned, possibly due to a memory advantage of highly connected
lexical representations (Storkel, 2004, 2009). Below, we report
analyses for regression models that include the co-variates.
Results without covariates are reported in the Supplementary
Material (Appendix H). Appendix G additionally controls for
the age at which children are first exposed to MSUs.

5.1.4. Statistical Analyses
When working with the corpus-induced AoFP data, we use
AoFP estimates from children who were not addressed in the
corpus used to calculate #MSU. In other words, we use AoFP
from the children addressed in the NA corpus for regression
models which include #MSU and frequency counts from the
BE corpus; and we use AoFP from the children addressed in
the BE corpus for regression models which include independent
variables from the NA corpus. This design de-couples the
independent variable from corpus-induced AoFP and is meant
to increase the generality of our study’s implications. Since the
CDI-derived AoFP estimates come from an external source, we
use MSUs from both the BE and NA corpus to predict the CDI
data—although restricted, as mentioned, to MSUs produced in
interactions with children aged 30 months or less.

This leaves us with three different corpus-AoFP pairings:
(1) BE corpus with AoFP from NA children, (2) NA corpus
with AoFP from BE children, and (3) age-restricted BE and NA
corpus with CDI-derived AoFP. The corpus material used in
each analysis contains around 50,000 MSUs. Regression analyses
are based on all words for which PhonN, Nsyl, Con, and AoFP
estimates are available: 6,208 and 5,577 words for analyses
(1) and (2), and 615 words for analysis (3). Each data set

14See the Supplementary Material, Appendix C, for a collinearity analysis.
15http://crr.ugent.be/archives/1330

contains AoFP values for content as well as function words.
Additional information on the target words is presented in the
Supplementary Material (Appendix D).

In order to avoid problems from zero counts, #MSU was
increased by 1. All variables were log-transformed and then
standardized (via transformation to Z-scores). We compute
95% percent confidence intervals for regression coefficients and
R2 values via statistical bootstrapping (Davison and Hinkley,
1997), with each bootstrap based on 100 random samples
with replacement, and a sample size equal to the number of
data points. When comparing two effects, we bootstrap 95%
confidence intervals for the difference between them. If zero
is not contained within this interval, we can claim with 95%
certainty that the difference is not due to chance.

5.2. Results and Discussion
We compare the effects associated with three independent
variables (#MSU-S, #MSU-F, #MSU-P), resulting in three
pairwise comparisons: (1) #MSU-S vs. #MSU-F, (2) #MSU-
S vs. #MSU-P, and (3) #MSU-P vs. #MSU-F. Each of these
comparisons is conducted for two statistics (β , R2) and three
corpus-AoFP pairings (calculate #MSU from BE corpus and
AoFP from NA corpus; calculate #MSU from NA corpus and
AoFP from BE corpus; calculate #MSU from age-restricted
NA plus BE corpus and use CDI-derived AoFP). Figure 4

summarizes the first set of comparisons, for (1) #MSU-S
vs. #MSU-F. Figure 5 then summarizes (2) #MSU-S vs. #MSU-P,
and Figure 6 summarizes (3) #MSU-P vs. #MSU-F. We discuss
each comparison in turn.

Figure 4A shows, as a function ofN, the regression coefficients
for #MSU-S and #MSU-F, as well as the difference between both;
and Figure 4B does the same forR2. Similar to the plots presented
in the previous analysis, each figure begins with N = 1, 000,
which is then incremented in steps of 1,000 until N is equal to
the number of all available MSUs. For most N, the coefficient
for #MSU-S is more strongly negative than the coefficient for
#MSU-F. Thus, the more MSUs contain a given word, the earlier
that word is first produced, and this predictive relationship is
stronger for #MSU-S than for #MSU-F. We find a similar pattern
for R2: Across most N, #MSU-S can explain a larger amount of
variance in AoFP than #MSU-F. We can state, then, that #MSU-S
performs better at predicting AoFP.

This pattern is similar across all three pairings of corpus and
AoFP data, although the confidence intervals are much larger
when using CDI-derived AoFP. This is probably due to the
smaller number of data points: The regression models with CDI
estimates are based on 615 words, while the regressions with
corpus-derived estimates include approximately ten times the
number of words. As a result, we operate with less statistical
power when conducting analyses with the CDI-derived estimates,
and the differences between β / R2 do not always reach statistical
significance. The overall pattern, however, is similar across the
different AoFP estimates—indicating that #MSU-S is indeed
better-suited for predicting AoFP.

The only choices of N for which this is not true are (a) very
small values and (b) values close to the largest possible value.
Generally, β and R2 take near-zero values at N = 1, 000. This

Frontiers in Psychology | www.frontiersin.org 13 January 2019 | Volume 10 | Article 80

http://crr.ugent.be/archives/1330
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Grimm et al. Children Probably Store Short Chunks

FIGURE 4 | Comparison of #MSU-S (green line) and #MSU-F (blue line). (A) Bottom: regression coefficients (β), with 95% confidence intervals. Top: difference

between green (#MSU-S) and blue (#MSU-F ) line, with 95% confidence intervals. (B) Bottom: amount of variance in AoFP (1R2 in %), with 95% confidence

intervals, that can be explained by #MSU. Top: difference between green ( #MSU-S) and blue (#MSU-F ) line, with 95% confidence intervals.

is because at 1,000 MSUs, we can only derive #MSU counts for
a relatively restricted number of target words. But as we increase
N, #MSU-S and #MSU-F begin to perform better. R2 increases,
and the coefficients associated with the two predictors now
take negative values. Crucially, regression models with #MSU-S
outperform their counterparts with #MSU-F.

At some point, the difference starts to decrease, until it
disappears once N is equal to the number of all MSUs. This
makes sense: If the two chunk sets contain all MSUs, #MSU-S and
#MSU-F are calculated from the same selection of MSUs, and the
two estimates will take the same value. A larger N means that the
two chunk sets from which we calculate #MSU-S and #MSU-F
overlap more and more, and the two estimates begin to converge.
Thus, past a certain point, the differences in R2 and β decrease.

We thus have good reason to claim that #MSU-S is
better suited for predicting the time course of word learning
than #MSU-F. Figure 6 shows, moreover, that #MSU-S also
outperforms #MSU-P, with a pattern that is very similar to the
one obtained in the previous comparison. At the same time,
almost no significant difference emerges when comparing #MSU-
P and #MSU-F (Figure 6). Together, the three comparisons
suggest that there is no (strong) difference in the effects obtained

with #MSU-P and #MSU-F, while #MSU-S performs consistently
better at predicting AoFP than the other two #MSU counts.

The effect size, however, is rather small: Baseline models
that include the covariates explain approximately 25–45%
of the variance in AoFP (see the Supplementary Material,
Appendix E), while the addition of #MSU-S only increases this
by 4–5% (given a sufficiently large chunk set). In addition, a
post-hoc analysis revealed that chunk sets containing the 10,000
shortest MSUs also cover a larger proportion of target words
(by about 10 percentage points) than corresponding chunk sets
with particularly frequent or internally predictable items (see the
Supplementary Material, Appendix F). Thus, #MSU-S might
explain more variance in AoFP than the other two predictors
simply because there is a larger proportion of target words
with non-zero #MSU-S counts, relative to #MSU-F and #MSU-P
counts.

The larger coverage of target words may thus bias results
with respect to the amount of variance that can be explained in
AoFP. Note, however, that #MSU-S is also associated with a more
strongly negative regression coefficient, which is unrelated to the
number of data points (provided that there is a bare minimum
of data points). We can thus still claim that particularly short
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FIGURE 5 | Comparison of #MSU-S (green line) and #MSU-P (red line). (A) Bottom: regression coefficients (β), with 95% confidence intervals. Top: difference

between green (#MSU-S) and red (#MSU-P) line, with 95% confidence intervals. (B) Bottom: amount of variance in AoFP (1R2 in %) that can be explained by

#MSU, with 95% confidence intervals. Top: difference between green (#MSU-S) and red (#MSU-P) line, with 95% confidence intervals.

chunks are better-suited for predicting word learning than either
especially frequent or internally predictable chunks—albeit by a
small margin.With these caveats, the results suggest that children
may not store many complete utterances as undersegmented
chunks; but that when they do store chunks, these are more
likely to correspond to short rather than frequent or internally
predictable MSUs.

6. GENERAL DISCUSSION

In this paper, we compared (1) frequent, (2) short, and (3)
internally predictable chunks. In one of two analyses, we found
that selections of short MSUs tend to contain more single-
word utterances than selections of frequent or predictable MSUs,
suggesting that sequence length is a more useful cue to wordhood
than the other two predictors. In a second analysis, we also
found that short MSUs perform better at predicting the time
course of word learning. Together, the two analyses suggest that
undersegmented chunks, to the extent that they are stored by
children, tend to be short and word-like sequences—rather than
frequent or internally predictable multi-word chunks.

We hypothesize that the results are partly due to children’s
memory constraints, an argument that forms part of item-based
learning (MacWhinney, 1978, 2014). Within this theoretical
framework, memory constraints are assumed to prevent children
from storing longer speech sequences. Instead, children are
thought to extract relatively short sequences (e.g., short phrases
or multi-morpheme words) as unsegmented units. These
sequences are then further segmented via comparison to known
items. Some of the units discovered in this manner will
correspond to predicates, which children relate to particular
arguments in the context of item-based patterns (e.g., his +
object). Thus, the claim is that part of children’s early lexical
and syntactic development can be traced back to short input
sequences. From this perspective, it is not surprising that short
MSUs outperform frequent and internally predictable MSUs at
predicting the time course of word learning.

Given that the effect size is relatively small (short chunks
only explain 4–5% of the variance in AoFP), children may
not store many complete utterances as undersegmented chunks.
Since we also found, in analysis II, that short MSUs are the
most word-like, our findings instead support a scenario wherein
most of the units which children extract as hypothesized words
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FIGURE 6 | Comparison of #MSU-P (red line) and #MSU-F (blue line). (A) Bottom: regression coefficients (β), with 95% confidence intervals. Top: difference

between red (#MSU-P) and blue (#MSU-F ) line, with 95% confidence intervals. (B) Bottom: amount of variance in AoFP (1R2 in %) that can be explained by

#MSU, with 95% confidence intervals. Top: difference between red (#MSU-P) and blue (#MSU-F ) line, with 95% confidence intervals.

correspond to actual words. Given MacWhinney (2014)’s finding
that approx. 25% of (English) parental utterances are single-word
utterances, child-directed speech would appear to be well-suited
for supporting such a segmentation strategy.

Children’s memory constraints, then, might result in a
segmentation bias toward discrete or indivisible linguistic units—
i.e., word-like sequences that cannot themselves be segmented
into smaller units. In addition, children might occasionally
extract and store short multi-morpheme chunks, driving lexical
and syntactic learning (MacWhinney, 1978, 2014). Such an
account can explain our results, and it also lines up with the
nature of children’s early productions—which consist mostly
of single-word utterances,16 despite occasional productions of
apparently undersegmented material, as reported by e.g., Peters
(1983).

This perspective has implications for research concerned with
frequent multi-word sequences, which are sometimes referred to
as formulaic sequences. Various studies have demonstrated that
both adults (Arnon and Snider, 2010; Arnon and Priva, 2014) and
children who have completed the segmentation process (Bannard
andMatthews, 2008; Arnon and Clark, 2011) are faster to process

16Cf. standard text books on first language acquisition, e.g., Clark (2009).

formulaicmulti-word phrases, and that this processing advantage
cannot be reduced to the frequency of individual words. Such
results suggest that language users represent some aspect(s) of
frequent word sequences—above and beyond information about
constituent words.

Since the subjects in these studies had completed the
segmentation process, it is unlikely that they process multi-
word phrases in a holistic fashion, without accessing component
words. Indeed, other studies have collected evidence that access
(in adult processing) to frequent trigrams (Arnon and Priva,
2014), to idioms (Sprenger et al., 2006), and to frequent adjective-
noun and noun-noun phrases (Jacobs et al., 2016) involves
access to individual words. Post-segmentation, that is, language
users appear to possess analyzed representations of multi-word
phrases. This naturally leads to the question whether holistically
stored chunks are retained past the segmentation stage as fully
analyzed representations, or whether chunks are discarded once
the segmentation process is completed. In the latter case, chunks
and representations of frequent phrases would result from two
different processes. One would be related to segmentation and
involve the storage of larger units that are gradually analyzed, and
the other would discover phrases through usage patterns within
fully segmented input (Arnon and Christiansen, 2017).

Frontiers in Psychology | www.frontiersin.org 16 January 2019 | Volume 10 | Article 80

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Grimm et al. Children Probably Store Short Chunks

The results presented in this study imply that children
preferentially store word-like sequences as undersegmented
chunks—which tend to be short, not frequent. This, in turn,
supports accounts wherein representations for frequent multi-
word sequences tend to emerge after the segmentation process
has run its course. Arguing from the current results, in
other words, we suggest that most cognitive representations
for formulaic multi-word sequences cannot be traced back to
undersegmented chunks in children.

7. LIMITATIONS AND OPEN QUESTIONS

We have presented results, from an exploratory study, intended
to inform research on undersegmented chunks in child language
acquisition. These results were obtained after imposing two filters
on the chunks used to predict child word learning: (1) Chunks
were required to be at least two syllables long, and (2) each
chunk had to occur in at least two of the considered CHILDES
corpora. In addition, our results are correlational in nature, and
our interpretation may could be confounded by one or more
unknown variables. We address both concerns below.

The two filtering steps, while undesirable, were necessary
given the design of our study. We excluded single-syllable
sequences from our analyses since these are already fully
segmented (given our assumption about the primacy of
proto-syllables during language development)—whereas we are
interested in unsegmented chunks. Future work should explore
possible sub-syllabic perceptual primitives (e.g., phones), which
would allow us to treat monosyllabic utterances as unsegmented
units.

We also excluded multi-syllable chunks that occurred in only
one out of the 51 considered CHILDES corpora. By collapsing
data from many different corpora, we attempted to leverage the
large amount of English child-directed speech contained in the
entire CHILDES data base. However, if we had considered all
chunks from the 51 CHILDES corpora, we would have selected
many chunks that are idiosyncratic to particular child-caregiver
dyads—i.e., chunks that are not contained in most children’s
input. In other words: We would have used very rare chunks to
predict when children generally learn to use words, even though

most children will never have an opportunity to acquire words
in the context of these exceedingly rare chunks. To alleviate
this problem, we imposed a minimum count of two CHILDES
corpora per chunk. Future work should implement a longitudinal
design, which would remove the need for this filtering step.

Lastly, given that ours is a correlational study, there
may be several different causes that could explain the
results. We have tried to exclude confounding variables by
controlling for a number of covariates, as well as by ensuring
that child productions of target words are not due to
children simply repeating the chunks we used to predict word
learning. Nevertheless, causality can only be established through
experiments with human participants. A possible direction for
future work is to test the predicted segmentation bias for short
sequences in an artificial word segmentation task that contrasts
short with frequent and internally predictable speech sequences.
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