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Abstract

Memory networks have been a popular choice
among neural architectures for machine read-
ing comprehension and question answering.
While recent work revealed that memory
networks can’t truly perform multi-hop rea-
soning, we show in the present paper that
vanilla memory networks are ineffective even
in single-hop reading comprehension. We an-
alyze the reasons for this on two cloze-style
datasets, one from the medical domain and
another including children’s fiction. We find
that the output classification layer with entity-
specific weights, and the aggregation of pas-
sage information with relatively flat attention
distributions are the most important contribu-
tors to poor results. We propose network adap-
tations that can serve as simple remedies. We
also find that the presence of unseen answers
at test time can dramatically affect the reported
results, so we suggest controlling for this fac-
tor during evaluation.

1 Introduction

Recent work in machine reading comprehension
and question answering has put a lot of focus
on proposing new datasets and developing new
reading architectures. Among the latter, memory
networks (Weston et al., 2014; Sukhbaatar et al.,
2015; Miller et al., 2016) have played a promi-
nent role, spanning the research on general reading
comprehension, such as using children’s fiction
(Hill et al., 2016) and news texts (Kadlec et al.,
2016), as well as the research on knowl-
edge integration and reasoning (Kumar et al.,
2016; Das et al., 2017; Kaushik and Lipton, 2018;
Chen and Durrett, 2019a).!

"The code is available athttp: //bit.1ly/2MOK6a4.

"Many architectures, often with more complex memory-
organization mechanisms, have been inspired by the origi-
nal memory networks, e.g. Graves et al. (2016), Weissenborn
(2016), Xiong et al. (2016), Hudson and Manning (2018).

While the workings of memory networks for
reading comprehension and question answering
have already been intensively studied, the em-
phasis has so far gravitated mainly around their
ability to peform multi-hop reasoning, where the
network is expected to combine evidence from
different pieces of text when deriving the cor-
rect answer. The main conclusion has been that
memory networks have great difficulties learn-
ing multi-hop reasoning in an end-to-end way
(Chen and Durrett, 2019a,b). Chen and Durrett
have demonstrated that even after providing a
strong supervision signal to the attention compo-
nent, the results on WikiHop (Welbl et al., 2018)
and bAbI (Weston et al., 2015) benchmarks still
remained far behind other competing models. Our
work complements their work and extends it by
focusing on the applicability and effectiveness of
memory networks in single-hop rather than multi-
hop machine reading comprehension. Addition-
ally, whereas Chen and Durrett’s work focused
primarily on memory network’s use of attention
and on the proposed solution of attention super-
vision, we investigate a feature-based approach to
give the network a strong attention signal, and also
discuss other factors that lead to network’s ineffec-
tiveness.

In the first part of the paper, we describe our at-
tempt (§ 3) at establishing competitive results with
memory networks on a medical reading compre-
hension task where other baselines and neural se-
quential models achieve much better results. At-
tracted by its transparent and extensible architec-
ture, we had planned to extend memory networks
for knowledge integration in the medical domain.
Instead, we have found them to be ineffective at
plain reading comprehension, so we have set out
to explore the reasons behind this in more depth.
We identify two major factors. First, the large
parametrized output layer suffers from unseen an-
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swers at test time, which can be alleviated by ei-
ther including a pointing layer, which obviates the
need to keep weights for each answer entity, or
performing entity anonymization, which reduces
the size of the output layer and thus sparsity. Sec-
ond, aggregating vectors of different passage win-
dows into a single representation is harmful. Since
the attention weights are distributed rather evenly,
the most relevant passage windows for the given
query aren’t given enough prominence in the ag-
gregated representation. We can reduce this prob-
lem by providing a stronger signal to the network
about what passage window has the highest atten-
tion weight.

We also have a closer look (§4) at the sce-
nario where memory networks have been previ-
ously shown to work well, most clearly on Chil-
dren’s Book Test (CBT) (Hill et al., 2016). We
find that we can indeed obtain competitive results
using the same architecture and implementation.
However, through experimentation we confirm the
findings from the literature that the scores on CBT
are inflated due to a dataset design bias, and argue
that memory networks don’t effectively take into
account the full evidence presented to them.

With our analysis, we are adding to the ex-
isting body of work that is (re-)examining the
established machine reading and language under-
standing architectures, e.g. Wangetal. (2017);
Kaushik and Lipton (2018); Chen and Durrett
(2019a). We hope that our results can be of use
also more broadly to researchers using other
architectures or tasks.

2 Models and datasets

Our cloze-style reading comprehension tasks in-
volve predicting a missing entity as the answer to a
query @, which includes a gap. A support text pas-
sage P is given in which the answer can be found.

2.1 Memory networks

We first concisely describe the generic architecture
of the memory network (MemNet) (Weston et al.,
2014; Sukhbaatar et al., 2015) used in our work.
In a window-based representation, the passage P
consists of windows around candidate answer enti-
ties, and the query (), which is also represented as
a window around the empty slot. The words in the
passage windows and the query are mapped into
d-dimensional vectors using an embedding matrix
E € RIVIX4 where |V| is the size of the vocab-

ulary. The query and passage window (memory
slot) encodings are then obtained by averaging:
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where ¢; is the embedding of the word at position
¢ in the query window, and p;, is the embedding
of kth word in jth passage window. The words in
the passage window include the candidate answer
entity.

Next, an attention mechanism measures the
compatibility between the query representation g
and the window representations p;. We formulate
the attention as:

a; = softmaz(cos(q,p;)), (2)

where cos is the cosine similarity.”> This gives us
an attention weight for every slot j, indicative of
its importance with respect to the query. The atten-
tion probabilities are then used to weigh the con-
tribution of each memory slot into an aggregate
output vector:

0= Zajp;, 3)

where p's are obtained using another embedding
matrix £/ € RIVI*4_ This matrix is different from
FE as we would like to distinguish between the
representation used for measuring passage-query
compatibility and the representation used for an-
swering. In the key-value variant (Miller et al.,
2016; Kaushik and Lipton, 2018), p; only repre-
sents a window encoding around the candidate,
and p;- an encoding of the candidate itself. Em-
pirically, this doesn’t lead to improvements in our
case, so we don’t use it.

Finally, in a single-hop architecture like ours,
we feed the output vector o, the query vector g,
and their additive and multiplicative interactions
directly to the output classifier, which is a soft-
maxed linear layer:

softmax(W([o;q;0+q;0©4q])+0b), (4)

where W € R€*44_ (' is the number of output la-
bels, or answer candidates, and b is the bias term.
Although the original architecture feeds only o+ ¢
to the output classifier, we have found our ap-
proach to be empirically superior.

2We have investigated several other possibilities, includ-
ing parametrized attention (cf. Seo et al. (2017)), and finally

chosen the cosine similarity as the simplest yet a well per-
forming function.



2.2 Medical machine reading: CliCR

The dataset of English clinical case reports
(CliCR) (Suster and Daelemans, 2018) is a gap-
filling reading comprehension dataset consisting
of around 100,000 queries and their associated
documents. The dataset was built from case re-
ports, requiring the machine reader to answer the
query with an entity which is either a medical
problem, a test or a treatment. Unlike in the origi-
nal paper, we first pre-process the dataset by recre-
ating the data splits so that those instances whose
answer isn’t found literally in the passage text are
removed. This increases the scores across the
board, and, crucially, ensures that pointing-based
models can also be applied to the dataset. We re-
run the baselines and comparison models from the
original paper, and report those in Table 1.

Baselines The baselines include choosing as an-
swer a random entity in the test passage (random)
and selecting the most frequent passage entity
(max-freq). We also include a distance-based
method that uses pre-trained word embeddings
(sim-entity), where we vectorize the passage
and the query, and then choose that entity from
the passage whose representation has the high-
est cosine similarity to the query representa-
tion. These are the same baselines as reported in
Suster and Daelemans (2018).

Other neural readers For comparison, we in-
clude several other neural systems. In the Stan-
ford Attentive reader (SAReader) (Chen et al.,
2016) and the Gated-Attention reader (GAReader)
(Dhingra et al., 2017), the architectures resemble
that of MemNet, but the query and the passage
are encoded using bidirectional GRUs. While
SAReader predicts the answer with a classification
layer, as in MemNet, GAReader drops it and bases
the answer prediction directly on attention weights
using a pointer mechanism (Vinyals et al., 2015;
Kadlec et al., 2016; Wang and Jiang, 2017).

We additionally apply two models whose re-
sults haven’t yet been published on CliCR. The
first is BiDAF (Seo et al., 2017), which represents
input words using a character-level CNN and pre-
trained word embeddings, and then encodes the
query and passage with an LSTM. Both query-
to-passage and passage-to-query attention is com-
puted, but it is not used to summarize the passage
into a fixed-size vector. The resulting vectors from
the LSTM and the attention part are then passed

to the recurrent modeling layer. We also apply
QANet (Yuetal., 2018), which encodes words
similarly as BiDAF, but whose modeling compo-
nents are based on the idea of stacked encoding
blocks, which consist of CNN, self-attention and
feed-forward layers. Both BiDAF and QANet pre-
dict an answer span using a pointing mechanism.

2.3 Narrative machine reading: Children’s
Book Test (CBT)

To contrast the results obtained on CliCR with
those from another gap-filling dataset, we use
Children’s Book Test (CBT) Hill etal. (2016),
which consists of passages from children’s litera-
ture in English. Each instance contains 21 consec-
utive sentences, where the last sentence represents
a query with a missing slot. The goal is to fill the
slot with either a named entity (NE), a common
noun (CN), a verb (V) or a preposition (P), de-
pending on the task. For each query, a list of 10
candidates is already given. We apply the same
baselines as with CliCR.

3 Analysis of the failure case

In this section, we analyze the performance of
MemNet on CIliCR.

We have trained the network for 10 epochs and
selected the best performing model based on the
development set accuracy. We have tuned the
learning rate of Adam (Kingma and Ba, 2014) to
{0.01,0.005,0.001,0.0005}, the embedding di-
mensionality to {50,100,200}, the number of
hops to {1,2,3}, and the window size to 2 to
each side (thus in total 5 tokens including the en-
tity). We have set the size of the memory to
300. The word embeddings were pretrained on
a combination of the training set of CliCR and
PubMed abstracts (Hakala et al., 2016), amount-
ing in total to over 9 billion tokens. Other de-
tails about embedding pretraining can be found in
Suster and Daelemans (2018).

We summarize the results in Table 1 and discuss
them in turn in this and the following section. The
first thing to note is that although we can fit the
training data well with MemNet, the generaliza-
tion to unseen data remains poor as we only obtain
16.8 F1 on the test set. This is much lower than
that for other neural readers, and even lower than
that for the maximum frequency and embedding
baselines. Simple modifications such as chang-
ing the definition of the memory from window-



based to either sentences or key-value pairs have
no positive effect. We now present the factors that
strongly affect this low performance.

Effect of unseen answers We first have a look at
the number of training instances available for an-
swer labels. For those answers at test time that are
also observed in the training set, the median fre-
quency is 4 (mean=12, std. dev.=39, as measured
on the development set). However, as much as
around 60% of all answers in the development set
are never observed as answers in the training set.’
To investigate how this affects the results, we sub-
sample a new test set (called seen), which satisfies
the condition that all data instances must contain
answers which are already observed in the train-
ing set as entities. We see a considerable improve-
ment on this reduced test set—compared to the
original performance of 16.8 F1, we now achieve
an F1 of 25.0. This indicates that the low perfor-
mance can be partly attributed to the unseen an-
swers in the test set. In general, we expect this ef-
fect to be amplified in situations exactly like ours,
where the output layer is large (about 567 thou-
sand entities). Interestingly, however, the unseen
answers do not present a problem to other neu-
ral readers, which can be explained by a different
way that predictions are achieved in these read-
ers. More precisely, for GAReader, BiDAF and
QANet, it is irrelevant at test time whether the true
answer has been observed previously or not since
the prediction is a pointer to the passage and not
an answer entity from the fixed output vocabulary.
In this way, the prediction is typically achieved
based on attention directly (selecting as answer
the entity whose window has the highest attention
weight), without the need to learn the representa-
tion for each answer label in the output space. In
the case of SAReader, although it still uses an out-
put layer with dedicated weights for each answer,
the widely adopted practice is to anonymize the
answer entities (Hermann et al., 2015; Chen et al.,
2016; Wang et al., 2017). This procedure heavily
reduces the output space and reduces the chance of
observing a previously unseen answer at test time.
It also forces the network to focus more on read-
ing, since the anonymized entities (e.g. Qentitys)
become effectively just pointers devoid of any se-

3All entities from the training set build up the possible
output answer space. At test time, the correct answer may
have occurred as an entity in a training passage, but not as an
answer.

mantics, apart from providing co-reference infor-
mation (Wang et al., 2017). As the results show,
anonymization has an overwhelmingly positive ef-
fect for SAReader on CliCR.

To verify whether these alternative prediction
mechanisms would have a positive effect on Mem-
Net, we first try out a modification to its archi-
tecture where we replace the original output layer
with a pointing layer, so that the prediction is a
candidate from the window with the maximal at-
tention weight. The F1 score in this case increases
substantially, to 34.7. To apply anonymization, we
keep the original output layer of MemNet but map
all entities to numbered symbols, where the num-
bering is reinitiated for every data instance. For
a given passage with n different entity types, the
set of entities is thus { @entity,..., @entity,_, }.
The final number of output labels in the network
will correspond to the highest n encountered in the
training set. In our case, this results in an output
layer with a size of only 443 labels, where almost
all are observed during training. With anonymiza-
tion, the F1 score only increases marginally, from
16.8 to 18.1.

The above results suggest that the output layer
as included in MemNet by default may not always
be the best option, and that the presence of unseen
answers at test time strongly influences the results.

The role of attention Since the representations
from MemNet’s compatibility component are ag-
gregated prior to being passed to the output layer,
this could lead to blurring of information from sev-
eral passage windows, especially if the attention
weights aren’t strongly peaked. In practice, we
find that with a trained anonymized model, the av-
erage maximum attention probability is only 0.016
on the test set, with absolute variance from the
mean at 0.009. This tells us that the attention dis-
tribution generally isn’t strongly peaked towards
any particular passage window.

The results of MemNet-pointer and the
embedding-similarity baseline suggest that con-
textual similarity between the query and a single
passage window should provide a relatively
reliable clue about the correct answer, so it is
reasonable to expect that a stronger signal from
attention could help us to train a more competitive
model. We therefore explore two options. The
first uses a one-hot feature to indicate the best
candidate (attention-feat):
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1 ifi = cand(argmax; a;),
i = .
0 otherwise.

Here, the feature vector (; is one exactly at the in-
dex corresponding to the candidate answer whose
window attained the maximum attention weight.*

This is a more direct way of biasing the model
towards solutions preferred by hard selection than
using attention supervision (cf. Chen and Durrett
(2019a)). The feature vector is finally simply con-
catenated with other output vectors from eq. (4)
to form the output representation. The output
layer weights are expanded correspondingly, i.e. to
W e RE*(44+C) Table 1 shows that the attention
feature significantly boosts the results, from 18.1
to 33.9 F1. When we use pretrained embeddings,
this advantage is even greater at 36.7 F1. Clearly,
the network can use the added feature to good ef-
fect, while aggregating without the added attention
signal appears to be inadequate for good perfor-
mance. An obvious next question is whether the
aggregated information can contribute positively
to the results at all. If we drop the aggregated out-
put vector and only keep the feature vector in the
output layer (attention-feat-only), we observe a
further improvement by two points, which could
mean that the aggregated output vector is confus-
ing the network, at least on these simpler instances
which can be solved by using the attention feature
alone.

Yet another possibility of adding a strong atten-
tion signal to the output layer, but without the use
of the attention feature, is to avoid aggregation by
feeding only the single-best passage window vec-
tor to the output layer (best-window):

0= p;, where 7 = argmax ;. (6)
J

This technique was also used by Hill et al. (2016),
who call it self-supervision. We see here that we
achieve results that are almost identical to those
obtained with the attention feature. We can con-
clude that what appears to matter the most to the
memory network is some indication of the best
window, be it an indicator feature or the embedded

*We also tried using soft probabilities as values of the fea-
ture vector, but this had a less positive effect.

Model EM Fl

MemNet 12.8 16.8
- seen 21.0 25.0
- ten-cands 239 263
- ten-cands (seen) 55.7 575
- pointer 275 347
- anonymization 13.3  18.1
- attention-feat 27.8 339
- attention-feat (+emb-pretr) 30.3  36.7
- attention-feat-only (+emb-pretr) 32.2  38.7
- best-window 30.3  36.8
- best-window (+emb-pretr) 200 354
QueryClassifier 10.7 15.1
- seen 16.8 21.4
random 2.7 6.9
max-freq 146 19.0
sim-window 357 437
Stanford Attentive Reader’
- anonymization 340 413
- no-anonymization 10.8 15.8
Gated-attention reader’
- anonymization 422 50.0
- no-anonymization 382 456
QANet 39.5 46.5
BiDAF 447 52.8

Table 1: CIiCR results. Results indicated with | are
for models from Suster and Daelemans (2018). Results
are reported for the test split with those questions not
having an answer in the passage removed. The use of
pretrained word embeddings for the model variants in
the upper part of the table is indicated with +emb-pretr,
with randomly initialized word embeddings used other-
wise. In the bottom part of the table, all neural models
and sim-window use pretrained embeddings. Finally,
for QANet, the data splits are smaller in size to prune
out long sequences which led to memory issues.

window itself. A simple aggregate, however, is
far inferior since the query-weighted passage rep-
resentation gets too diffused as a consequence of
flat attention weights. This probably means that
the aggregate representation ends up resembling
just an average over all passage windows.

Overall, despite the fact that these modifications
improve the network’s performance considerably,
the memory network remains a poor competitor to
other machine reading systems in Table 1. The
BiDAF reader, which adds additional complex-
ity to the attention mechanism in comparison to
SAReader and GAReader, performs the best on
CliCR. >

3 Although the readers that we compare to contain a larger
number of parameters than MemNet, we don’t observe reli-
able improvements when parametrizing MemNet more heav-
ily (increasing the sizes of embedding and output matrices,
and introducing a weight matrix into the attention function).



4 Contrasting with Children’s Book Test

While our analysis from the previous section sheds
some light on the workings of the memory net-
work on CliCR, we now include in our analysis
also the CBT dataset, and compare some of its
characteristics to CliCR. Strong performance has
been previously shown on CBT using memory net-
works (Hill et al., 2016). With our implementa-
tion that is identical to the one we have used on
CIiCR,° we obtain similarly strong performance as
Hill et al. (2016) and Kaushik and Lipton (2018).
The results are included in Table 2.

We now discuss why the basic network without
any modifications appears to work on CBT and not
on CliCR.

Effect of unseen answers The first thing we
note is that the performance on CBT varies a great
deal across different parts of the dataset. The
network does worst on the named entities part
(NE). The CBT dataset statistics in Table 3 show
that for named entities, only around a half of the
test answer types are observed in the training set,
whereas for other parts this percentage is much
higher.

Model NE CN V P

random 100 10.0 100 10.0
max-freq 352 28.1 295 277
sim-window 314 260 30.7 232
QueryClassifier 43.1 453 672 635
- seen 533 462 68.1 635
MemNet 445 482 675 632
- seen 57.1 49.0 68.1 632
- Hill et al. (2016) 493 554 692 674

- Kaushik and Lipton (2018)  35.0 37.6 525 55.2

Table 2: Accuracy in % on CBT for different dataset
parts of the test set, using exact match. All MemNet
models use random word embeddings.

NE CN v P

test size 2500 2500 2500 2500
ans types in train 5078 4253 2322 85
ans types in test 422 696 406 43
% found in train 56 93 93 100

Table 3: CBT statistics, with a low proportion of named
entities encountered as choices in the training set high-
lighted in bold.

®We have set the network’s hyperparameters to the same
values as on CliCR. The size of the memory was adjusted in
such a way that all passage windows are used in training for
each dataset part.

Number of candidates Furthermore, an obvi-
ous difference between the two datasets is that
there are always ten candidates given in CBT,
whereas in CliCR all entities in the passage are
possible candidates (112 on average). To see the
effect of reducing the pool of candidates on CIiCR,
we cap the number of possible candidates to ten
(as in CBT), thus including nine random candi-
dates from the passage plus the correct answer.’
This results in a dramatically higher score of 57.5
F1 compared to 25 F1 on the seen test set of
CliCR (Table 1). Of course, pre-selecting candi-
dates makes the task less natural as we rely on an
external oracle that shortlists the candidates. This
practice, as performed on CBT, should generally
be avoided as it is unreasonable to expect to have
a strong test-time system for winnowing the can-
didates down without performing proper reading
comprehension (cf. Chen and Durrett (2019b) for
a similar observation).

Query-only model Is the network exploiting a
more direct correspondence between queries and
answers in CBT? Prior work has shown that a
baseline predictor which excludes passage infor-
mation can return strong results on some datasets
(Chen and Durrett, 2019a,b; Anand et al., 2018).
Our results confirm those of Kaushik and Lipton
(2018), where the query-only baseline reaches or
surpasses the performance of the full MemNet.
This can explain why we see (seemingly) compet-
itive results with MemNet. Despite a large pro-
portion of unseen answers and the aggregation of
window vectors, the network can still draw on the
association between queries and answers, which
constitutes a CBT’s construction bias.

On CIiCR, the original MemNet performance is
already poor from the start, so we wouldn’t ex-
pect to see a strong result when using the query
input alone. Indeed, the query classifier obtains
only 15.1 F1, with a gap to MemNet being more
pronounced on the seen test set (21.4 vs. 25.0 F1).
In this respect, CliCR appears to be more difficult,
as the network can’t exploit the query-answer cor-
respondences to obtain good results. Of course,
the dataset could still contain other artefacts we
are presently unaware of (Feng et al., 2019).

To return to Kaushik and Lipton (2018)’s study,
their main finding in relation to the CBT dataset

It would also be possible to carry out an experiment
where we adversarially add more false candidates to CBT and
then stress-test on it.



has been that it contains a bias where the query
and, to a somewhat lesser extent, the passage can
be used in isolation to predict answers with an
unexpectedly high level of accuracy. We suspect
that their results reveal not only the dataset bias,
but also MemNet’s poor reading capability, espe-
cially pertaining to measuring query-passage com-
patibility, and reworking this information success-
fully into an answer. Specifically, we see that other
readers in Kaushik and Lipton (2018) obtain much
higher results than the memory network, despite
the bias. For example, GAReader records a forty-
point advantage on the NE part, and 33 points on
the CN part. This advantage might be explained by
different text encoders of the two networks, which
is a GRU in GAReader and an embedding layer
in the memory network. Also, the difference be-
tween the query-only model and the full model is
24.3 points (NE) for GAReader, but as little as 5.9
points for the memory network. We believe this
points to memory network’s modest capability of
accounting for the passage in light of the query.

5 Conclusion

Our analysis reveals that using a vanilla variant of
memory networks doesn’t lead to competitive re-
sults on single-hop machine reading comprehen-
sion tasks. We have identified two primary rea-
sons for this. First, the use of the output classifi-
cation layer that keeps weights for every answer
candidate is detrimental. This appears to pose a
problem in the presence of a large number of un-
seen answers at test time. We see that when we
remove the instances with unseen answers from
the test set, the results are improved dramatically.
We have found that replacing the original output
classification layer with a pointing mechanism or
performing answer anonymization are better ca-
pable of dealing with the problem of unseen an-
swers. Secondly, the aggregation of different win-
dow vectors with barely varying attention weights
leads to a poor input representation for the final
layer. Incorporating a stronger signal about the
most compatible passage window, for example via
a one-hot attention feature, leads to a perceivable
improvement.

A few remarks about the limitations of our study
are in place. The scope of our results covers a
generic memory network only. For other mem-
ory network-based architectures with more com-
plex encoding and compatibility layers the results

might be different. While using pretrained word
embeddings leads to an observable improvement,
it is likely that other types of representations, such
as pretrained contextualized embeddings from lan-
guage models, may result in even stronger im-
provements. Finally, we have carried out the anal-
ysis on two cloze-style datasets only, which may
limit the generalizability of our findings to other
QA and machine reading datasets.
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