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A B S T R A C T

Concept extraction is an important step in clinical natural language processing. Once extracted, the use of
concepts can improve the accuracy and generalization of downstream systems. We present a new unsupervised
system for the extraction of concepts from clinical text. The system creates representations of concepts from the
Unified Medical Language System (UMLS®) by combining natural language descriptions of concepts with word
representations, and composing these into higher-order concept vectors. These concept vectors are then used to
assign labels to candidate phrases which are extracted using a syntactic chunker. Our approach scores an exact F-
score of.32 and an inexact F-score of.45 on the well-known I2b2-2010 challenge corpus, outperforming the only
other unsupervised concept extraction method. As our approach relies only on word representations and a
chunker, it is completely unsupervised. As such, it can be applied to languages and corpora for which we do not
have prior annotations. All our code is open-source and can be found at www.github.com/clips/conch.

1. Introduction

Concept extraction, also referred to as Named Entity Recognition
(NER), is a task in which concepts or named entities are extracted from
free text. It is widely used in general Natural Language Processing
(NLP), and also an important task in the clinical domain, where it can
help with the classification of diseases or recommendation of treat-
ments by automatically detecting which concepts are present in, for
example, an Electronic Health Record (EHR). The extraction of concepts
can then improve the performance of downstream systems.

For the clinical domain specifically, however, several obstacles re-
main. One of these is access to clinical data: sharing EHRs, which
contain sensitive patient information, presents hospitals with important
practical and ethical issues regarding the research carried out on those
records [1]. As a result, there are few annotated sources for concept
extraction in the clinical domain.

Furthermore, because of the large variability in language use within
and across clinical notes, the high volume of abbreviations and acro-
nyms, specialized language use, and spelling mistakes [2], systems
which are exposed to a single corpus of notes might not transfer well to
other corpora of clinical notes [3]. For the task at hand, this problem is
compounded by the fact that most publicly available corpora of patient
records only contain records from a limited number of specialties,
which constrains the number of concepts one encounters during

training, and hence the number of concepts one can predict with a
supervised system. The i2b2-2010 corpus [4], for example, contains
notes from three separate ICU wards from hospitals in the United States
of America. Hence, any system which is trained on gold standard data
from this corpus might not be as performant on data from other regions.

These factors, i.e. the relative shortage of data and the large
variability within the available data, complicate the creation of accu-
rate systems for the extraction of clinical named entities. Another
confounding factor is that general, i.e. non-clinical, NER systems tend
to focus on extracting proper names, such as organizations and specific
persons [5,6]. Put in another way: clinical NER systems tend to focus on
the extraction of information which is more related to facts than to the
current status of the world than the information extracted by general
NER systems. Therefore, techniques from general NLP might not
transfer well to the clinical setting [7].

The goal of this paper is twofold: First, we make a case for using
unsupervised techniques for concept extraction in the clinical domain,
for the reasons stated above. Second, we provide a framework for the
unsupervised extraction of clinical concepts through semantic compo-
sition, which we compare to CubNER [8], another method for un-
supervised extraction of clinical concepts, and the current state of the
art in unsupervised clinical concept extraction.

The method we present does not depend on gold standard labeled
training corpora, and hence sidesteps the issue of the availability of
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labeled data, while not being fitted to any corpus in particular. Our
approach starts from the idea that good semantic representations of
words and phrases will provide us with enough leverage to accurately
extract clinical terminology in the form of concepts. These concepts can
then be used in downstream applications, as input to other classifiers,
or as building blocks for other representations.

In previous work [9], we applied simple composition functions,
such as averaging and addition, to distributed representations in order
to solve the task of Word Sense Disambiguation (WSD) in a biomedical
context. In WSD, the goal is to find the right sense of an ambiguous
surface form, for example, to distinguish the two senses of the term
“strep”, one of which denotes a streptococcus infection, and another
which denotes the streptococcus bacteria. WSD is comparable to con-
cept extraction in the sense that both tasks require the identification of
unknown words. The main difference between the tasks is that in WSD
the boundaries and identities of the ambiguous words are usually
known, while concept extraction requires extraction of entities from
running text. As NER is, in general, a more difficult task than WSD, the
current system can be seen as an extension of the previous system.

The previous system worked as follows: for each of the ambiguous
terms in the task, we created a representation of the context of this term
by concatenating the right and left context words within a pre-specified
window. We then replaced each word in this context by its distributed
representation, and summed over this set of representations, creating a
new distributed representation we called a context vector.

Concurrently we created a set of concept vectors from the Unified
Medical Language System (UMLS®) Metathesaurus® ontology [10]. For
each of the target concepts in the dataset, we took all descriptions, and
performed composition by replacing each word by its representation
and then summing. This led to what we called concept vectors.

We then calculated the cosine similarity between these concept
vectors and the context vectors of ambiguous forms to retrieve the
concept with the highest similarity between the ambiguous form and
concept vector. The idea behind this process is that the local context in
which a word occurs provides us with enough information to determine
the particular sense of a word. In the current work, we use the same
principle, but extend it to also include the phrase or word itself; in WSD
the word or phrase itself precisely is the thing which needs to be dis-
ambiguated, and as such it can’t be used as a reliable cue for dis-
ambiguation. In concept extraction, exactly the opposite is the case, and
the phrase itself does provide a cue to its meaning.

In short, our approach uses unsupervised word representations,
which represent the meaning of words in a single dense vector, and uses
simple composition operators, e.g. addition or averaging, to create si-
milar vector representations of multi-word units, such as phrases. In
parallel, we use the same set of word representations and operators to
compose descriptions, taken from the UMLS Metathesaurus, into
higher-order concept representations. As in Tulkens et al. [9], because
both the concept and phrase representations are created using the same
technique, they are comparable, and can therefore be linked to one
another on the basis of their distance in vector space.

2. Background

Our system is based on the idea that, when appropriately con-
structed, representations of phrases can be directly compared to re-
presentations of concepts. If we can find a way to construct concept
representations that are situated in the same vector space as phrase
representations, concept extraction reduces to matching each phrase
representation with a concept representation. In this section, we will
first review the literature on distributed representations of words and
phrases, paying specific attention to the notion of compositionality,
second, we will review how concept representations have been con-
structed. Finally, we give a short overview of other unsupervised
techniques for NER.

2.1. Distributed representations

Recent work in the field of NLP has focused on creating vector re-
presentations of words which accurately represent the semantic prop-
erties of a word. This is usually achieved by exploiting what is known as
the distributional hypothesis, which states that words which are similar
in meaning are often used in similar contexts [11]. Hence, by re-
presenting words with vectors based on their co-occurrence patterns,
words with similar meaning get similar D-dimensional vector re-
presentations, where D is usually a relatively small value, i.e., 50 < D <
500. This approach has been particularly successful when implemented
in a neural network which, instead of counting co-occurrences, learns
word representations by predicting words from their context [12,13]. In
any case, these word representations, having a fixed size, allow systems
that use them to deal with very large vocabularies.

Given that we understand how to learn vectors for words, a simple
way of learning phrase representations is to concatenate co-occurring
words based on frequency [14]. For example, based on co-occurrence
statistics, we might learn that “new” and “york” co-occur frequently,
and we might then decide to concatenate them, and then learn a vector
for “new_york” as a separate token. This compounding approach works
quite well in the clinical setting, as shown by Henry et al. [15], but
suffers from the downside that these tokens need to be detected and
learned during training. Therefore, this method does not generalize to
unseen compounds or phrases.

Moreover, while the problem of assigning semantic vectors to words
and phrases on the basis of co-occurrence is well understood, the pro-
blem of constructing similar vectors for sentences or other higher-order
structures is still largely unsolved [16]. This issue is intimately related
to the compositionality of natural language; unlike words, whose se-
mantics do not rely on the composition of individual letters, sentences
and phrases get their meaning from the composition of the individual
words making up that sentence [17]. An exception to this are com-
pound idioms, such as “red tape” and “iron lung”, which do not neatly
decompose, and are more than the sum of their parts [18].

As such, learning phrases as if they were regular words can only get
us as far as our training data, as each phrase will need to have occurred
in the training data in order to have a representation. Clearly, methods
for modeling the semantics of higher-order units need to be able to
mimic the compositionality of natural language to some degree.

Models that use parse trees to guide composition have been utilized
to create accurate representations of the sentiment of a sentence
[19–21] and paraphrases [22]. Note that applying a compositional
function does not necessarily imply that the compositional function is
required to respect syntactic principles, or include a model of syntax
[23].

In this work, we take the latter route, and employ composition over
words without taking into account the syntactic dependencies between
words in that sentence. We refrained from using these syntactic de-
pendencies because, in general, syntactic parses are expensive to con-
struct, and might result in more noise when run on clinical text.
Additionally, involving a syntactic parser makes the resulting system
more language-specific, as parsers are not available for every language,
especially in the clinical setting.

2.2. Distributed representations of concepts

Given the framework of distributed representations and phrases, we
move on to describe work on creating vector representations of con-
cepts. In order to function as representations in the context of concept
extraction, these concept representations should be recoverable from
the texts that describe them.

Hill et al. [24] create a model to map from descriptions of a concept
to a word which denotes that concept, a task which is also referred to as
reverse dictionary look-up. An example of reverse dictionary look-up is
a mapping from “An animal of the African savannah with long legs and
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highly elongated neck” to the word “giraffe”. To learn the mapping
from descriptions to words they use a Long Short Term Memory (LSTM)
[25], which is a gated variant of the Recurrent Neural Network (RNN)
[26,27]. They compare ranking loss and cosine loss, among others, to
predict the word representation of a word given its description, which is
fed into the LSTM sequentially. To solve this task, the LSTM needs to
learn to combine semantic representations in meaningful ways, and can
thus be seen as a task in which an LSTM learns a closed composition
function.

In the clinical domain, De Vine et al. [28] used a skipgram-like
model to learn concept representations by first using Metamap©, a su-
pervised method, and then learning the distribution of these concepts
from their co-occurrences.

Choi et al. [29] create distributed representations of UMLS Concept
Unique Identifiers (CUIs), through the distribution of concepts within
binned data gathered from an extremely large corpus of patient notes
[30].

Similarly, Beam et al. [31] combine the two above works, and ex-
pand it to learn representations of about 108,000 concepts from three
diverse corpora.

We argue that all these approaches are unsuitable for the current
framework. The approach of Hill et al. [24] is unsuitable for our pur-
poses, as one could argue that mapping from descriptions to words is
not the same as mapping from phrases to concepts, as words may still be
ambiguous in terms of the concept they represent. As such, learning to
map from descriptions to concepts requires us to first solve the problem
of getting appropriate vector representations for ambiguous concepts,
which is exactly the task we are trying to solve in the current work. As
such, we consider our work to be complementary to that of Hill et al.
[24]. Similarly, the techniques for learning concept representations are
not directly applicable to the current work, as they focus more on
learning representations which might serve as input to other classifiers.
The concept representations we use in the current work are instead
focused on being extractable from text.

2.3. Clinical concept extraction

The work most related to ours is CubNER [8], a system for un-
supervised concept extraction. CubNER uses several (pre-specified) se-
mantic types from the UMLS semantic network to generate seed terms,
which are then used to generate signature vectors for noun phrases
extracted from the corpus. First, noun phrases are extracted by a
chunker or parser. Following this, each of these noun phrases can be
linked to one of the classes based on its similarity with each of the class
representations. In contrast to our work, however, CubNER does not
create task-agnostic concept representations, but instead tunes re-
presentations which are specific to a corpus, in this case the i2b2-2010
corpus [4]. As the methodology and corpora are close, we directly
compare our system to CubNER in Experiment 3.

Also close to our approach is the work of Abacha and Zweigenbaum
[32], in which an enhanced version of Metamap©, a UMLS-based
model, is used to extract concepts from the i2b2-2010 database. Spe-
cifically, they employ a tagger to extract syntactic features which are
then utilized to limit the number of concepts extracted by Metamap©.

In contrast to unsupervised extraction of concepts, of which the
papers above were the only examples we could find in the clinical
domain, there has been a lot of interest in the supervised extraction of
concepts, most employing some sort of structured learning approach
using Conditional Random Fields [4]. Recently, state-of-the-art NER
system based on stacked bidirectional Recurrent Neural Networks with
combined word and character-level features have proved to be perfor-
mant in the supervised extraction of concepts from clinical and non-
clinical text [33–36].

There are few resources for concept extraction in the clinical do-
main. Notable is the BluLab corpus, which was partially annotated by
Kim et al. using the i2b2-2010 guidelines, but which was later

withdrawn from general use [3]. Other datasets are the SemEval 2014
[37] and 2015 [38] shared tasks, which included a NER component, in
addition to other tasks. Both of these corpora consist of notes from the
MIMIC corpus [39], annotated with disorder CUIs.

In general NLP, several systems for unsupervised NER have been
proposed, including systems based on Adaptor Grammars [40], using
the web as a corpus [41], syntactic rules [42], and parallel text [43].

3. Materials

3.1. Dataset

We test our approach on the i2b2-2010 challenge corpus [4], which
is a dataset consisting of deidentified patient notes from three different
institutions, namely Partners Healthcare, the Beth Israel Deaconess
Medical Center, and the University of Pittsburgh Medical Center. While
the original dataset contained 394 training reports and 477 test reports,
the currently available dataset contains 170 training reports (73 from
the Beth Israel Deaconess Medical Center and 97 from Partners
Healthcare), and 256 test reports, the source distribution of which is not
known. Each of these reports is annotated on the token span level using
one of three labels: Test, Treatment and Problem. As such, the i2b2-
2010 challenge corpus is a Named Entity Recognition (NER) sequence
tagging problem.

As our method is unsupervised, we use the training documents from
the Beth Israel Deaconess medical center as a development set. Because
the text in the dataset was already tokenized, there was no need for any
additional processing. We use the IOB tagging scheme [44] to represent
which tokens belong to chunks. The corpus statistics are shown in
Table 1.

3.2. Corpus

We used the MIMIC-III critical care database [39] to train our word
representations. The MIMIC-III database consists of 53,423 Intensive
Care Unit admissions of 46,467 distinct patients, and is the largest
known publicly available corpus of patient notes to date. We pre-
processed all free text patient records in the database by first lower-
casing them and then using a regex-based tokenizer which also re-
moved all of the de-identified markers, such as dates and time stamps.
Our tokenized version of the MIMIC-III notes contains approximately
580 million words.

We then trained word representations on the resulting corpus of
notes using FastText [45]. FastText is an extension of the well-known
skipgram model [12], which projects words into a low-dimensional
space by predicting the context of a word given the identity of the word.
During the training, this causes words with similar contexts to be put
closer together. The main innovation of FastText is that the model also
estimates separate vectors for subword character ngrams, which causes
the model to be able to generalize beyond co-occurrence context. An
example of this is the observation that words ending in “sarcoma” can
be semantically grouped together regardless of their context.

We used the following hyperparameters: a window size of five,
character ngram range of three to six, negative sampling with five ne-
gative samples, and a vector dimensionality of 320. This resulted in a
set of 612,200 word representations. Note that we only use the word
representations created by FastText, and do not include the OOV

Table 1
Corpus statistics for the train and test sets.

# Words Problem Treatment Test

Beth Israel 88,722 4187 3073 3036
Partners 60,819 2885 1768 1570
Test 267,249 12,592 9344 9225
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estimation part of a trained FastText model in our experiments. We also
used similar Skipgram representations, created with word2vec [12], but
using the FastText representations improved performance.

3.3. UMLS Metathesaurus

Throughout this work, we used the 2015AB version of the UMLS
Metathesaurus. We implement our own software for extracting concepts
and their associated descriptions from the UMLS.1

4. Overview of the method

Supervised sequence tagging usually entails simultaneous extraction
and labeling of phrases in text. That is, most sequence taggers do not
differentiate between extracting a phrase and assigning a label to this
phrase.

In contrast, using an unsupervised method for a sequence tagging
task naturally decomposes into a two-step process. In a first step, a set
of phrasal units, commonly called the candidate set, is extracted from a
set of documents. In a second step the candidate set is pruned and the
remaining candidates are assigned labels, which can then be compared
to the gold standard chunks. As these two steps are completely separate,
we will describe them separately in the following sections. Fig. 1 shows
a high-level overview of our system.

4.1. Step 1: phrase extraction

Like Zhang and Elhadad [8], we use a chunker to extract noun
phrases from the texts of the i2b2 corpus, which we treat as candidate
phrases for labeling. We used cTakes [46] to parse all documents, and
extracted all noun phrases from these documents as candidates. Any
phrases whose boundaries did not coincide with a word boundary were
not extracted, because this would cause problems with the gold stan-
dard IOB alignment, which was on the token level. Because the i2b2
corpus was already tokenized, this only occurred in the case of time and
dosage-related words such as “s/p” (status post), none of which were
assigned a label. Because of this reason, we chose not to extract these
chunks as candidates. Note that our use of phrases as candidates entails
that we assume that concepts largely coincide with noun phrase
boundaries. See Section 6.1 for an analysis of how warranted this as-
sumption is.

This assumption was already investigated by Zhang and Elhadad
[8], who concluded that, depending on the sub-corpus, between 3% and
5% of gold standard chunks did not have any overlap with any noun
phrase, while around 50% of chunks completely overlapped with noun
phrases, and around 45% of chunks either had partial overlap with a
noun phrase, or were completely overlapped by a larger noun phrase.
Because of this, they concluded that it is possible to use noun phrases
extracted by a chunker to extract candidates.

However, because they used the Apache OpenNLP Chunker2 we can
not directly adopt their analysis; although cTakes uses the OpenNLP
Chunker, it was retrained on a large set of clinical documents. Therefore,
we perform an analysis on the output of our chunker in Section 6.1.

4.2. Step 2: candidate labeling

4.2.1. Semantic composition of phrases
After extracting the candidate set using cTakes, as described above,

we compose the candidates into vectors using arithmetic composition
over the vector representations of the words in each phrase. All ex-
tracted noun phrases were treated as candidates in the second step of

our analysis; we did not perform any additional pruning of the candi-
date set.

For each candidate, we extract all words within the phrase, and a
window of N context words to each side of the phrase, obtaining three
separate sequences of words. For each of these sequences, we replace all
words in this sequence by their word representations, and use a com-
position function to obtain a D-dimensional vector, where D is the size
of the original word representations.

More formally, for each sequence, we take the elementwise mean of
all word representations in that sequence:

=W
W

xmean( ) 1
| | x W (1)

where W is the set of representations in the sequence, x denotes an
individual vector representation, and |. | denotes the cardinality op-
erator

We apply Eq. (1) to the left context, the phrase and the right context
to obtain three vectors. These three vectors are then composed again
using an elementwise mean, obtaining a single vector:

= + +c W W W W W W( , , ) 1
3

(mean( ) mean( ) mean( ))l p r l p r (2)

That is, the components of candidate vector c are the mean of the
components of the words in the left context Wl, the words in the phrase
Wp, and the words in the right context Wr . As before, the resulting
composition also has the same dimensionality as the word vectors.

Note that both of these formulas are actually just an application of
an element-wise mean over the zeroth axis of a matrix of word or
phrase representations. The composition function can therefore also be
written as:

=c W W W W W W( , , ) mean(mean( ), mean( ), mean( ))l p r l p r (3)

More generally, our composition function can be rewritten as:

=c W W W f f f f W f W f W( , , , 1, 2) ( ( ), ( ), ( ))l p r l p r2 1 1 1 (4)

where f1 and f2 are elementwise functions, and Wl Wp, and Wr are the
word representations in the left context, phrase, and right context, re-
spectively. Eq. (3) can be recovered from (4) by using mean (Eq. (1)) as
both f1 and f2.

As such, we experimented with a variety of different functions, and
noted only a very small difference between using the elementwise
averaging and addition functions. As the equations above show, we
therefore use averaging as a function in all our experiments. Henry
et al. [15] carried out a comprehensive evaluation of various element-
wise composition functions and found that there was very little differ-
ence between using the element-wise mean and summation functions in
composition of concepts [15].

Unlike Henry et al. [15], we also investigated elementwise multi-
plication as a composition function, as this has been shown to be suc-
cessful in the context of count-based models [47,48]. This turned out
not to work at all; any model which used multiplication obtained low
scores on our development set in experiment 1. This is most likely due
to the fact that the models produced by FastText represent their latent
dimensions as fractions centered around the origin (i.e. the zero vector).
As multiplications of fractions trend towards zero, multiplying several
fractions almost always results in zero, or near-zero vectors, and
therefore makes vectors indistinguishable from each other.

As an additional refinement, we weigh the words in both context
windows by the reciprocal of their distance to the focus word, as fol-
lows:

= =
+

W
i

W W
N i

Wrec ( ) 1 ;rec ( ) 1
1i

N

i
i

N

iR L
(5)

where W again is a set of word representations and N is the number of
representations in W. That is, given a context window, the first word

1 The software is open-source, and available for use at www.github.com/
clips/humumls.

2 https://opennlp.apache.org/.
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will get a weight of = 1.01
1 , the second word will be weighted by = .51

2 ,
and so on.

Our final equation then becomes:

=c W W W W W W( , , ) mean(mean(rec ( )), mean( ), mean(rec ( ))l p r l p rL R

(6)

This improved performance dramatically, and also removes the
need to manually specify window sizes; in practice, any word which is
more than 10 words away will have such a low weight that its inclusion
has a negligible impact on the overall semantic representation. The
entire composition model is shown in Fig. 2.

Additionally, we also attempted to weigh the composition function
using Inverse Document Frequency (IDF), as this has been shown to be
effective in (biomedical) Information Retrieval-based settings [49].
Weighting word vectors by their IDF scores resulted in a slightly ne-
gative effect on performance on the development set in Experiment 1,
and as such, we did not experiment with it further.

4.2.2. Semantic composition of concepts
As explained above, our method relies on a notion of similarity

between candidate phrase vectors and concept vectors in assigning CUIs
to phrases. As such, we again rely on composition functions to create

Fig. 1. An overview of the system. First, a chunker extracts phrases from a corpus, which are then composed into context vectors. In parallel, UMLS concepts are
composed into concepts vectors. These are then compared, which allows the system to assign CUIs to individual chunks from the corpus.

Fig. 2. A schematic overview of the composition step. The triangle shapes denote the reciprocal distance weighting function. Note that the representations refer to
the representations of the words in the phrase.
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vectors of concepts.
We extract all concepts from the UMLS Metathesaurus which have a

definition in English, leading to a set of 178,343 concepts. To expand
the coverage of our data, we also added the surface forms of the pre-
ferred terms to these concepts. We chose to restrict ourselves to con-
cepts with definitions because of efficiency reasons; including all con-
cepts with at least a single associated surface string drastically raised
the number of concepts, from 178,343 to 3,221,699. In what follows,
we refer to both definitions and surface strings as descriptions of a
concept.

For each of the extracted concepts, we apply the functions detailed
in equations f1 and f2, as defined in the section above.

= …concept W W Wmean(mean( ), mean( ), , mean( ))n0 1 (7)

where Wn denotes the set of word representations present in the nth
description of the concept. Note that we do not apply any reciprocal
weighting in the concept phrases, as there is no left or right context to
speak of.

As we only use textual descriptions in our work, i.e. no relation
information, the UMLS can be replaced by other dictionaries, e.g. lan-
guage-specific terminology resources or other dictionaries.

4.2.3. Labeling concepts
Following Zhang and Elhadad [8], we assign each of the 178,343

extracted concepts one of the labels from the i2b2-2010 label set by
exploiting the semantic group and semantic types in UMLS. Table 2 lists
the semantic types or groups and their respective labels. Each of the
concepts which has a link to one of these semantic types or groups gets
assigned the respective label, while other concepts get assigned the
label “np”. The distribution of labels is shown in Table 3. This labeling
clearly shows a significant imbalance; most concepts are assigned the
label “np”. Even if we only consider concepts assigned one of the three
i2b2-2010 labels, we see that the number concepts assigned Treatment
and Test is vastly lower than the number of concepts assigned Problem.

At the current juncture, it is important to note an important dif-
ference between the way our system uses these labels and the way they
are used in CubNER. In CubNER, the semantic types and groups are
used to create a single vector for each of the three labels in the i2b2
label set. This means that CubNER is inherently limited to assigning
concepts with exactly these labels. For different corpora, another la-
beling strategy, based on domain knowledge, needs to be devised.

Our approach, in contrast, is more flexible and first assigns unique
CUIs to each phrase, which are then converted to each of the labels in
the i2b2-2010 dataset. This means that our system can assign any
concept a CUI, which the user can then choose to convert to an ap-
propriate label, depending on the context and user needs.

Furthermore, CubNER relies on TF-IDF filtering to remove concepts
without clinical significance, while in our system we simply rely on the
fact that concepts which are not relevant will get assigned “np” as a
label. Note that this also removes the TF-IDF filtering threshold, an
important free parameter in CubNER, from the model.

4.2.4. Assigning labels to phrases
After having completed all of the above steps we are left with 2 sets

of vectors: a set of phrase vectors, and a set of concept vectors. Within
the context of the i2b2 experiments, each of the concept vectors is also
associated with a label. We then assign each phrase a label by

calculating the cosine similarity between the phrase vector and all
concept vectors.

Formally,

=phrase concept phrase concept
phrase concept

sim( , ) ·
|| || ·|| ||2 2 (8)

where phrase and concept are the phrase and concept vectors respec-
tively, and ||. ||2 denotes the euclidean or L2 norm.

=phrase phrase cassign( ) arg maxsim( , )
c C (9)

The assigned concept for a given phrase is then the concept c from
the set of concepts C with the largest cosine similarity to the phrase.

Depending on the setting, we then assign the CUI of the concept
vector with the highest cosine similarity, or the label assigned to this
concept vector, to the phrase.

5. Experiments and results

In this section we present the experimental setups we used to test
the efficacy of the model, as well as analyze the obtained results.
Experiments 1 and 2 are kNN experiments, designed to reveal the as-
sumptions behind the model. Experiment 3 is a direct comparison to
CubNER, and involves assigning labels from the i2b2 label set to ex-
tracted noun phrases. Note that only the third experiment involves the
concept vectors described in Sections 4.2.2 and 4.2.3. The first two
experiments are completely intrinsic, and evaluate the phrase vectors
compared to the gold standard labels from the i2b2-2010 corpus.

In all experiments, we evaluate using the F1-score metric, which is
the harmonic mean of Precision (P) and Recall (R), which are both
calculated using the amount of True Positives (TP), False Positives (FP),
and False Negatives (FN). In all our experiments, we use Macro-aver-
aged Precision, Recall, and F1, where applicable.

=
+

P TP
TP FP (10)

=
+

R TP
TP FN (11)

= × ×
+

F P R
P R

1 2 (12)

5.1. Experiment 1: kNN on the validation set

Experiment 1 is a k Nearest Neighbors (kNN) experiment on the
validation set, intended to test the choices we made during the con-
struction of the model. For all validation experiments, we used kNN
classification on the patient notes from the training portion of the i2b2
corpus which came from the Beth Israel Deaconess medical center.

5.1.1. Evaluation methodology
We evaluate our model as follows: for each of the noun phrases ex-

tracted from the documents by cTakes [46], we check whether it over-
laps with any of the gold standard chunks from the i2b2 corpus. If it does,
the label of that specific gold standard chunk gets assigned to the phrase.
Any gold standard chunks which do not have any overlap with a noun
phrase, or have overlap with more than one noun phrase, are counted as

Table 2
The labels assigned to the semantic types and groups.

Label Semantic Types or Semantic Groups

Problem Disorders
Treatment Therapeutic or preventive procedure, Clinical drug
Test Laboratory procedure, Laboratory or test result, Diagnostic

procedure

Table 3
The distribution of labels in our set of concepts.

# Occurrences

Problem 32,914
Treatment 4206
Test 3855
NP 137,368
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false negatives. Similarly, any noun phrases which overlap with more
than one gold standard chunk are counted as false positives, and re-
moved. Noun phrases which do not overlap with any gold standard
chunk are kept, and given the label “np”. These should cluster together
with other chunks with the label “np”. This assignment strategy might
seem arbitrary, but this is the only arrangement that leads to a constant
number of items, regardless of the parser or chunker used.

After having assigned each phrase a label, we can test our system
using kNN. For each phrase which was assigned a label, we calculate
the cosine similarity to all other phrases, and look at the most frequent
label within the k closest neighbors, and assign that label to the phrase.
In all experiments, we set k to 1.

Additionally, we also test our model in a “perfect” setting, in which we
use the gold standard chunk boundaries as phrase boundaries. This allows
us to examine the effect of the chunker on system performance, and shows
us an “ideal world” scenario, in which we have a perfect chunker.

We test four different models:

focus Only includes the focus words, and does not include any
context.

context Only includes context, and leaves out the focus words. This
model gives an indication of the system performance on noun
phrases without any known words.

full Includes both focus words and context.
baseline Uses a Bag of Words (BoW) representation. This model can be

directly compared to the focus model, and gives an approx-
imation of the effect of the word representations.

The baseline model is constructed directly on the training set by
simply counting the words in these documents and assigning the 10,000
most frequent words a feature in a one-hot encoded vector space. An
important caveat regarding the baseline is that even if these models
perform on par with the regular models, it is still not tractable in
practice, because they take a large amount of RAM. In addition, the run
time of the baseline model more than doubled.

While the evaluation method we use is supervised, as it requires
gold standard data to function, it only serves as a test of the quality of
our representations; e.g. if the nearest neighbors of gold standard
chunks labeled “problem” are, on average, also labeled “problem”, the
clustering was successful. The phrase creation does not involve any
labeled data; even though the evaluation is supervised, the system can
be fully employed without labeled data, as we show in Section 5.3.

5.1.2. Results
The results of Experiment 1 are shown in Table 4. As we can see, the

context model, which only uses the context vectors, is clearly the
worst-performing model. This is unsurprising, as contexts do not ne-
cessarily provide us with a clue towards the meaning. Consider, for
example, the fragment “Patient had X”. Without any information about
X, this context can accommodate a test (“an X-ray”), a treatment (“some
aspirin”), or a problem (“a heart attack”). While in many cases, context
is bound to be more informative, using context as the sole predictor for
the class does not work. Even so, this model provides us with an ap-
proximation of how well we can cluster concepts in the case where we
do not have word representations for the phrases we are trying to

extract. (see Table 5).
Comparing the full to the focus model allows us to gauge the in-

fluence context has if we do have access to phrase information.
Surprisingly, the addition of context to the phrase itself only slightly
improves performance in the perfect setting, and leads to slightly de-
creased performance in the parsed setting. This shows that a naive,
sequential, view of context is probably not sufficiently informative.

Finally, it is surprising that the baseline model does so well, given
that it does not really have access to any semantic information what-
soever. In any case, it shows that the targets in the gold standard of the
i2b2-2010 corpus have a lot of lexical overlap, as this is the only cue the
baseline model can rely on.

5.1.3. The effect of k
As mentioned above, the results presented in the previous section

were all obtained by using kNN with k=1. Nevertheless, analyzing the
decrease in F-score for increasing values of k can reveal how robust our
models are to noise. Figs. 3 and 4 show the fluctuation for increasing
values of k in the normal setting and perfect setting, respectively.

These figures show that the baseline, performing nearly on par with
the other systems for k= 1, rapidly decreases in performance. This is in
sharp contrast to our systems, which maintain their performance for
most values of k. In the perfect setting, this results in the baseline
system dropping below the performance of the context system when k is
higher than 24.

5.2. Experiment 2: transferring between hospitals

One of the goals of unsupervised representation learning is the
creation of representations which can be reused in different contexts
without additional training. We test how well our representations can
be transferred between hospitals by creating representations on the
documents from the Partners Health clinics, and using these to classify
phrases from the Beth Israel Deaconess clinic. This experiment thus
provides us with additional evidence regarding the efficacy of our
method, as well as providing us with a test of transfer; that is, how well
our representations survive the transposition from one clinic to another.

Note that, in the case of the i2b2-2010 corpus, the transfer between
the clinics is bound to be relatively minor; both corpora ultimately
contain patient notes from the ICU of American clinics. In an ideal
setting, we would be able to transfer our representations across a wide
range of disciplines and specialties.

We evaluate the same five models as in Experiment 1, using the
same evaluation strategy, with the exception that we do not evaluate
the quality of the parsed noun phrases, and hence do not provide scores
for “perfect” chunking.

5.2.1. Results
The results of Experiment 2 are summarized in Table 6. As in Ex-

periment 1, the focus and full models outperform all others. An in-
teresting pattern of performance can be seen in the context model,
which notably suffers more of a performance hit than the other models
in the NP category, but experiences less severe drops for the i2b2-2010
labels. The baseline model, on the other hand, experiences more severe
drops in performance, which shows that its generalization performance

Table 4
F-scores per class per system in Experiment 1 in the setting where we align the
gold standard chunks with the parsed chunks. Bold numbers indicate the best
performing system for that class.

Problem Treatment Test NP Average

Focus .77 .78 .80 .86 .80
Context .32 .35 .31 .87 .43
Full .76 .76 .80 .90 .80
Baseline .74 .73 .75 .79 .78

Table 5
F-scores per class per system in Experiment 1 in the perfect setting, where we
use the gold standard chunks phrases. Bold numbers indicate the best per-
forming metric for that class.

Problem Treatment Test Average

Focus .95 .93 .94 .94
Context .69 .71 .67 .68
Full .95 .94 .95 .94
Baseline .90 .89 .89 .89
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is limited compared to the other models. Finally, this experiment does
show that every model experiences at least some kind of negative effect
of transfer, which was expected.

5.3. Experiment 3: assigning concepts

In this experiment we directly compare our system to CubNER. We
evaluated both our system and CubNER on the test portion of the
corpus. As in Experiments 1 and 2, we used the Beth Israel Deaconess
portion of the training set as a development set, and thus did not use the
test set in any of our development or tuning.

We ran CubNER using the source code provided by the original
authors,3 using the parameters mentioned in the paper and the 2015
version of the UMLS. We evaluate all models using Precision, Recall,
and macro-averaged F1-score. Following i2b2-2010 guidelines, we use
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Fig. 3. Average F-scores for increasing values of k in the normal setting.
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Fig. 4. Average F-scores for increasing values of k in the perfect setting.

Table 6
The F-score per class for each system in Experiment 2. The scores between
braces indicate the drop in performance when transferring between hospitals.
Bold numbers indicate the best performing system for that class.

Problem Treatment Test NP

Focus .70 ( .07) .64 ( .14) .70 ( .10) .87 (+.01)
Context .25 ( .10) .31 ( .04) .22 ( .09) .71 ( .16)
Full .68 ( .09) .64 ( .12) .69 ( .11) .91 (+.01)
Baseline .63 ( .11) .57 ( .16) .56 ( .19) .76 ( .03)

3 http://people.dbmi.columbia.edu/szhang/ner.html.
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two different evaluation settings. In the exact setting, a chunk is
counted as being correct if the start and end indices match exactly with
a gold standard chunk which has the same label. In the inexact setting,
an extracted chunk only needs to have some overlap with a gold stan-
dard chunk with the same label to be counted as correct, with the added
constraint that each predicted or gold chunk can only be counted as
correct once. Thus, if a predicted chunk overlaps with two gold stan-
dard chunks, both of which have the label of the predicted chunk, this
will only count as a single True Positive, and the second gold standard
chunk will be counted as a false negative.

The exact setting is generally a more realistic setting for NER, but
can also be considered too strict. For example, the inclusion or exclu-
sion of determiners can cause an extraction to be counted as incorrect,
even though this has little impact on the extracted concepts; “The left
ventricle” likely denotes the same concept as “left ventricle”.

We use the CoNLL-2002 shared task evaluation scripts [5] to eval-
uate the exact setting, while using our own code to evaluate the inexact
setting.

5.3.1. Results
The results can be found in Table 7. We see that our model out-

performs CubNER in both the exact and inexact settings, although the
margin in the Inexact setting is rather small. In the exact setting, we see
that our models in general have high precision compared to recall, but
still slightly outperform CubNER in terms of recall. In the inexact set-
ting, the story is a bit more nuanced, and CubNER obtains a high recall
score, causing it to outperform the full model. Such a big difference in
performance between the exact and inexact setting might be a reflection
of the quality of the parsing performed in CubNER instead of the quality
of the system itself.

We also compare our system to the best-performing system on the
i2b2 shared task by Bruijn et al. [50]. As we can see, the best-per-
forming supervised system outperforms the unsupervised systems by a
large margin.

To see the influence of the chunker, we again evaluated our systems
in the perfect setting, in which we use the gold standard chunks as
targets. These results are shown in Table 8. Here we see that the ad-
dition of context again helps, and that the difference between the
system and the baseline gets bigger. This shows that advances in clinical
parsing and chunking could greatly influence the accuracy of our
system in NER.

In contrast to experiments 1 and 2, we see that the performance of
the baseline drops sharply in comparison to the other models. That is,
while the baseline was good enough to link phrases with similar phrases
in the kNN experiments, it clearly suffers from not having access to
semantic information when linking to concepts.

Note that the results presented for CubNER here differ from those
presented by Zhang and Elhadad [8] in their original paper, as they do
not report scores using the test set. Even so, the scores we found when
testing on the Beth Israel Deaconess portion of the corpus were also
different; but only slightly so for the exact evaluation.

One distinct possibility for this difference in performance is that the
UMLS version causes a difference in performance; in the original paper
the 2012AB version of UMLS was used, while we use the 2015AB
version in all our experiments, including those with CubNER. However,
the authors themselves posit that CubNER is agnostic with regard to
UMLS versions. So, while the difference in score might be a reflection of
a bias in the model towards a specific version of UMLS, this does not
invalidate the scores of the model in this setting.

A larger difference was observed in the inexact setting; the original
paper reports F-scores around.50, which is.05 higher than the scores we
obtained. As such, this is highly likely to be a difference in calculation
of the inexact score rather than a true qualitative difference between
runs. A complicating factor is that we do not know which scripts they
used to evaluate, and what the exact evaluation criteria for inexact
overlap were. In the end, we think that we were able to provide a fair
comparison between both models, despite the difference in reported
scores.

6. Discussion

6.1. Analyzing the chunker

In this section, we briefly analyze the output of the cTakes chunker.
The results of Experiment 1 already showed that moving from the
perfect to the parsed setting already costs us about more than 10%
points in F-score overall. It is therefore trivial to see that the phrases
extracted using the chunker do not match the i2b2-2010 gold standard
phrase boundaries perfectly; if they did match perfectly, we would not
experience any decrease in performance.

We compare the gold standard chunk boundaries by treating the
phrase boundaries extracted by the chunker as predictions in a se-
quence tagging task. The results of this analysis are shown in Table 9.
As the results show, using the phrases extracted by cTakes lead to high
recall scores, especially in the inexact setting. Read in another way, the
table shows that about 60% of extracted phrases exactly overlap with a
gold standard chunk, while about 96% of phrases have partial overlap
with a gold standard chunk. Together with the poor precision score in
both the exact and inexact setting, we can infer that the chunker ex-
tracts a lot of superfluous phrases. Therefore, we conclude that almost
all concepts are expressed as (part of) a noun phrase, but that there are
a lot of noun phrases which do not contain clinical concepts.

Given the large difference between the exact and inexact settings in
this evaluation, we also perform an analysis of the length difference
between extracted phrases and gold standard chunks. This shows that of
the 2529 phrases which had inexact overlap with a gold standard

Table 7
Precision, Recall, and F1-score results of all systems in Experiment 3, as well as
the score of the best supervised system on the same dataset. Bold numbers in-
dicate the best performing system for that metric.

Exact Inexact

P R F P R F

Focus .438 .252 .320 .617 .355 .451
Full .393 .254 .308 .561 .363 .441
Baseline .336 .206 .256 .469 .287 .357
CubNER .285 .241 .261 .491 .414 .449

de Bruijn et al. [50] .836 .866 .852 .927 .927 .924

Table 8
Precision, Recall, and F1-score results of all systems in Experiment 3 if we as-
sume perfect chunking. Bold numbers indicate the best performing system for
that metric.

Perfect

P R F

Focus .882 .367 .519
Full .870 .369 .519
Baseline .811 .309 .449
CubNER – – –

Table 9
The results of a standard sequence evaluation when comparing the gold stan-
dard chunks versus the phrases extracted using cTakes.

P R F

Exact .218 .605 .321
Inexact .350 .968 .514
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chunk, 1628 phrases (64%) only had a one word length difference, with
a mean difference of 1.77. This indicates that the noun phrases largely
overlap with the gold standard chunks.

We also perform an analysis of the words in extracted phrases that
do not occur in the gold standard chunks. The 10 most common words
that occur in phrases without occurring in their gold standard chunks
are listed in Table 10. This shows several distinct patterns, including the
inclusion of dashes and numerals, which indicates that the cTakes
chunker includes items which are typically associated with the start of
lists as part of noun phrases. Also of note is the frequent inclusion of
“neg” and “no”, which indicates that negation is processed differently
by cTakes than expected in the i2b2-2010 annotation guidelines. Given
that none of these immediately impact the semantic content of a phrase,
e.g. “no hypertension” still contains the concept hypertension, albeit in
negated form, we conclude that noun phrase chunking is a good fit for
the task of NER on this specific corpus.

6.2. Is context necessary?

As noted above, the addition of context seems to help very little in
all our experiments. In Experiments 1 and 2, the models that included
both Focus words and Context increased the F-score very slightly, while
in Experiment 3, the Recall of the model that included both Focus
words and Context was also slightly raised.

This is contrary to our expectation; we expected the addition of a
contextually sensitive representation to significantly improve the
overall accuracy of the NER system.

As discussed in the beginning of the paper, previous work on WSD
showed that context by itself is enough to achieve good performance on a
biomedical WSD dataset [9]. Given the low score of the context system
in this paper, we see that the same does not hold for concept extraction.
Of course, concept extraction is a different task than WSD; in a WSD
setting, the number of available candidates is usually drastically reduced
to two or three alternatives, and sequence extraction does not need to be
performed. Similar effects have been observed in clinical spelling cor-
rection, where the benefits of context-sensitive disambiguation rapidly
decline when the number of possible alternatives increases [51].

An added complication is that, in some sense, adding context is
necessary; many concepts are not distinguishable through their surface
forms, and the only way to distinguish these words is exactly through
the context in which they occur. As such, the results obtained in this
paper require extra investigation; it is clear that adding contextual in-
formation is necessary to be able to distinguish concepts with the same
lexical form from each other, but context does not seem to help much.

Thus, an interesting open question is whether more syntactically
informed notions of context could be helpful here. The notion of context
used in this paper is extremely simple, and completely ignores the in-
herently hierarchical nature of language.

7. Conclusion and future work

In this paper we presented a simple method that utilizes pre-trained
word embeddings and simple semantic composition to create concept
representations. These representations can be linked to noun phrases
which are extracted with a chunker, thereby creating an unsupervised
system for the extraction of concepts. Our model, although faring no-
tably worse than supervised models on the same dataset, outperforms
the only other unsupervised model on the same corpus.

As far as future work goes, we clearly saw that the addition of
context to the semantic composition only helped very little. Interesting
future work would be to research new ways of compositional semantics
that do not necessarily involve conditioning on a supervised target. An
easy way to add notions of syntax is to use parse trees, for example
those produced by cTakes, and to use syntactic neighbors for compo-
sition, as in Socher et al. [22]. Another avenue that could prove fruitful
is the use of tree-structured auto-encoders [22] and similar models
[52,53], trained on large corpora such as the MIMIC-III corpus.

Finally, the current experiments were carried out using a subset of
the available CUIs from the UMLS Metathesaurus, mostly due to per-
formance reasons. While results are promising, future work should
focus on evaluating the impact of using such a subset, and on whether
CUIs can be aggregated in meaningful ways to form representations of
concept hierarchies.

All the code for running the system, preprocessing the data, and
visualizing the results is open-source, and can be found at: www.github.
com/clips/conch
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