
1

Effective weakly supervised semantic frame
induction using expression sharing in

hierarchical hidden Markov models

Janneke van de Loo1, Jort F. Gemmeke2, Guy De Pauw1,3, Bart Ons2,

Walter Daelemans1, Hugo Van hamme2

1CLiPS - Computational Linguistics Group, University of Antwerp, 2000 Antwerp, Belgium
2Department ESAT-PSI, KU Leuven, 3001 Heverlee, Belgium

3TEXTGAIN, Belgium

Abstract

We present a framework for the induction of semantic frames from utterances in the con-
text of an adaptive command-and-control interface. The system is trained on an individ-
ual user’s utterances and the corresponding semantic frames representing controls. During
training, no prior information on the alignment between utterance segments and frame
slots and values is available. In addition, semantic frames in the training data can con-
tain information that is not expressed in the utterances. To tackle this weakly supervised
classification task, we propose a framework based on Hidden Markov Models (HMMs).
Structural modifications, resulting in a hierarchical HMM, and an extension called expres-
sion sharing are introduced to minimize the amount of training time and effort required
for the user.
The dataset used for the present study is patcor, which contains commands uttered
in the context of a vocally guided card game, Patience. Experiments were carried out
on orthographic and phonetic transcriptions of commands, segmented on different levels
of n-gram granularity. The experimental results show positive effects of all the studied
system extensions, with some effect differences between the different input representations.
Moreover, evaluation experiments on held-out data with the optimal system configuration
show that the extended system is able to achieve high accuracies with relatively small
amounts of training data.

1 Introduction

The use of vocal interfaces in our daily lives is becoming more common: we can talk

to our smartphones through Siri, computers, smart-TV and other specialized do-

mestic devices, such as Alexa and Echo. People with physical disabilities, for whom

manual operation of such devices requires exhausting effort, could greatly benefit

from such a hands-free control interface. However, many people with physical dis-

abilities additionally have speech disorders, since motor impairments can also affect

the control of the speech articulators. This makes accurate speech recognition very

difficult. Still, case studies have also shown that, despite a speech disorder, some

ar
X

iv
:1

90
1.

10
68

0v
1

 [
cs

.C
L

]
 3

0
Ja

n
20

19

2 Van de Loo and others

users find it easier to use a speech recognizer than a keyboard or a switch-scanning

system (Chang, 1993; Hawley et al., 2007).

In the ALADIN project1, we aim to develop a speaker-dependent, adaptive vocal

interface for home automation, in which the vocabulary and command structures

are not predefined, but rather automatically induced by the system. This allows

users to address the system in an intuitive way, choosing their own commands. The

system is language independent and can adapt to regional or pathological features

of the user’s speech. The vocal interface is trained in an initial training phase in

interaction with the user, and keeps adapting to new data that are automatically

collected during the usage phase. This constant adaptation makes the system very

appropriate for people with progressive diseases.

During the training phase, spoken commands are associated with executed con-

trols, which are represented as semantic frames that encode the relevant properties

of the actions. An action such as pressing the button “4” on the TV remote control,

associated with the spoken command “switch the TV to channel four”, is repre-

sented by a frame of the type change channel, containing the slots <device> and

<channel> and their respective values TV and 4.

A semantic frame induction engine (FramEngine) then looks for recurring pat-

terns in the commands – which may be words, morphemes and/or other units –

and relates them to slots and their values in the associated semantic frames. This

induction task is weakly supervised, as there is only supervision at the utterance

level: no relations between parts of the utterances and parts of the semantic frames

are specified in advance. An important requirement for the ALADIN system is that

it needs to be able to learn these relations on the basis of a small set of training

instances, since the amount of effort required from the user to train the system

should be kept to a minimum.

In previous work (Ons et al., 2013), we presented the standard semantic frame

induction system (FramEngine) that has been developed in the ALADIN project,

and demonstrated the performance of an early implementation of this system with

non-pathological and pathological speech input. The results show that the system

has a promising learning potential with small amounts of training data, but that

enhancements are needed in order to produce practically usable accuracies for more

complex utterances. Improvements can be made both in the acoustic processing and

in the way semantic frames are induced from the utterance. This paper focuses on

the latter problem and studies the effect of extensions to the original Hidden Markov

Model approach when trained and evaluated on the basis of transcribed command

utterances.

Factoring out the acoustic complexities of the task allows us to evaluate the

semantic frame induction framework in optimal conditions and observe what is

minimally needed to reliably bootstrap semantics from a signal. In this chapter, we

consider different degrees of complexity and vary the granularity of the transcription

(lexical vs. sub-lexical vs supra-lexical). Experiments with transcribed data thus

1 http://www.aladinspeech.be

Effective weakly supervised semantic frame induction 3

allow us to set an upper bound to what can be expected of semantic frame induction

when it is applied to acoustic signals. In addition, using textual rather than acoustic

input enables a more thorough qualitative analysis of the system’s performance,

since the identities of the command segments – text segments rather than acoustic

patterns – are readily observable. In particular, the produced mappings between

the command segments and the slots and values in the semantic frames can be

inspected in detail.

Our aim is to find an appropriate level of generalization: the system should not

merely learn to map full utterances to full semantic frames, but rather learn asso-

ciations between parts of the utterances and parts of the semantic frames and be

able to make inferences about new combinations of such parts, which have not been

encountered in the training data. Furthermore, we will not only focus on achieving

the highest possible classification accuracy, but also on finding out which experi-

mental conditions minimize the amount of training time needed to achieve workable

results for the user. We will therefore rely extensively on learning curve experiments

to evaluate the proposed techniques against the backdrop of the self-learning, adap-

tive command-and-control interface envisioned by the ALADIN project.

In this case study, we use a dataset of commands and semantic frames for a voice-

controlled version of the card game Patience. This is an appropriate application in a

domestic context with an interesting level of complexity, as the vocabulary needed

to play Patience is fairly limited, but being able to model more complex aspects

such as word order, is crucial in determining the nature of the card moves, i.e. the

meaning of the commands. This makes the Patience task more complex than typical

home automation tasks, such as the control of lights, heating or the television, which

only require keyword spotting for successful semantic frame induction.

We will start this paper with a description of the task of semantic frame induction

in general and the standard ALADIN approach in particular in Section 2. We will

describe the data for our case study in Section 3. The extensions to the architecture

are presented in Section 4, while Section 5 outlines the research questions that are

addressed in this paper and present the experimental setup to answer them. This is

followed by a discussion of the experimental results in Sections 6 and 7, after which

we present our conclusions and plans for future research in section 8.

2 Semantic Frame Induction

The task of inducing semantic representations from utterances is well studied in

the context of natural language database querying. (Zettlemoyer and Collins, 2005)

describe an approach based on Probabilistic Combinatory Categorial Grammars

to tackle the problem. Their research highlights the need to move beyond what a

traditional HMM-approach is capable of. This point is also made by (Chen and

Mooney, 2011), who describe how a semantic parser can be automatically built by

observing human actions.

The work presented in this paper differs from these research efforts in that the

ALADIN approach is designed to be applicable to acoustic, as well as textual units.

As such, it is more akin to research efforts in the context of spoken language under-

4 Van de Loo and others

standing (SLU), many of which use semantic frames (Wang et al., 2011), or at least a

representation that can be easily converted into such a frame-based representation.

Various semantic frame induction approaches have been investigated, based on

fully aligned training data in which all the slots in the semantic frames have been

aligned with their corresponding word(s) in the utterances. When non-hierarchical

semantic representations are used in such a supervised context, the semantic frame

induction task is essentially a supervised sequence labeling task, akin to “concept

tagging”, in which the words of an utterance are tagged with concepts (slots) from

the semantic representation. (Hahn et al., 2011) apply a variety of discriminative

and generative techniques to perform concept tagging of transcribed speech corpora

(Bonneau-Maynard et al., 2009; Mykowiecka et al., 2009; Dinarelli et al., 2009). Pre-

vious work in the ALADIN project similarly applied an exemplar-based supervised

concept tagging method, using manually tagged PATCOR (cf. Section 3) utterances

as training data (van de Loo et al., 2012).

In the work presented here, we use a generative concept tagging approach, with

a lower level of supervision. In most generative concept tagging models, hidden

concept sequences are modeled with a concept n-gram model and each concept

state in the sequence generates a word sequence according to another model, which

(Wang et al., 2011) call the lexicalization model. An early generative model used for

concept tagging was the hidden semi-Markov model by (Pieraccini et al., 1991). This

model was applied to the Air Travel Information System (ATIS) dataset (Hemphill

et al., 1990; Dahl et al., 1994). In (Pieraccini et al., 1991), the lexicalization model

was a word n-gram model, conditioned on the concept state. With n=1, this results

in a classical hidden Markov model (HMM); with n>1, this is a hidden semi-Markov

model (HSMM). The HMM model in the default configuration of ALADIN (Section

2.1.2) corresponds to the n=1 version of their model. However, in our model, we use

slot values as concept states, while in (Pieraccini et al., 1991), the concept states

correspond to slots, as in most concept tagging systems. In most systems, the slots

are first induced through a concept (=slot) tagging process, and the slot values are

added in a separate post-processing step. In ALADIN’s decoding process, on the

contrary, the command units are directly tagged with slot values, which eliminates

the need for additional post-processing.

The models discussed above were all applied to supervised concept tagging tasks.

In the experiments described in this paper, such alignments will not be available.

For concept tagging based on unaligned data, some generative methods based on

statistical machine translation (SMT) techniques have been used, in which the

alignment between words and concepts is explicitly modeled, using expectation

maximization for parameter optimization (Epstein et al., 1996; Della Pietra et al.,

1997; Macherey et al., 2001).

It is important to note, however, that in the experiments described in (Epstein

et al., 1996) and (Macherey et al., 2001), most words expressing concepts were re-

placed with class names (such as CITY), thereby constraining their possible align-

ments to concepts. Such prior class member information is also not available in the

ALADIN training situation. Since the command input in the final ALADIN system

Effective weakly supervised semantic frame induction 5

commands

semantic
frames

NMF

slot value

initial
mapping

(emission
probs)

HMM
training

emission
probs

transition
probs

slot value

slot value

trained
HMM

TRAINING:

DECODING:

command

decoding
with

trained

HMM

sequence of
slot value

activations

semantic
frame

slot value
selection

Fig. 1. The ALADIN framework.

will consist of anonymous categorical ‘word’ units, rather than known lexical items,

no prior lexical information can be used to constrain the alignments.

In all of the aforementioned approaches, all concepts in the annotations were

assumed to be expressed in the utterances. In the ALADIN training situation,

however, this assumption does not hold: the semantic frames used for training are

generated automatically from actions (e.g. button presses or mouse operations), and

most of the time contain slot values that are not actually expressed in the associated

utterances. In the following subsection, we will describe the basic ALADIN approach

to perform frame decoding with a system trained on utterances and their associated

semantic frames, very likely to contain redundant information.

Finally, (Goldwasser and Roth, 2014) describe work on learning natural language

interpretations without direct supervision. While they also apply their technique to

the case study of solitaire. The approach is however completely different from ours,

as their goal (and the learning mechanisms to reach it) is framed in the context

of learning to play the game legally, rather than to model a user’s vocabulary and

grammar.

2.1 The ALADIN approach

An overview of the ALADIN semantic frame induction framework is shown in Fig. 1.

In the training phase, the user speaks a set of commands, and for each command

simultaneously executes the associated action on the device or application. The ac-

tions are automatically converted into action frames: semantic frames in which all

the relevant properties of the action are represented in the form of slots filled with

values (see Fig. 4(b) for an example). Based on this set of spoken commands and

their corresponding action frames, an HMM is trained in which the command struc-

6 Van de Loo and others

tures and their relations with the semantic frame structures are modeled. HMM

training is preceded by a non-negative matrix factorization (NMF) phase, in which

an initial mapping between the slot values in the semantic frames and the observable

units in the commands is produced. This initial mapping serves as an initialization

of the HMM’s state emission probability distribution.

During decoding, commands spoken by the user are decoded into sequences of

slot value activations, using the trained HMM. Based on these sequences, semantic

frames are generated that contain the information on the basis of which the appli-

cation can execute the corresponding actions. The framework will be described in

more detail in the following subsections.

2.1.1 Non-negative matrix factorization (NMF)

The first step in the training process is to produce an initial mapping between

units in the commands and slot values in the semantic frames. This is accomplished

through NMF, a method that factorizes matrices as the product of two low-rank

matrices, using non-negativity constraints (Lee and Seung, 1999). Given a matrix

V with dimensions [M x N], NMF approximately decomposes it into a matrix W

with dimensions [M x R] and a matrix H with dimensions [R x N].

When spoken commands are used as input, NMF is used to discover recurring

acoustic patterns (e.g. word-like units) in the signal, using the semantic frames as

grounding information. The process is depicted in Fig. 2(a). The input consists

of two matrices: Vframes and Vcommands. Vframes contains the frame supervision:

each command column consists of a binary vector of slot value activations, which

represents the associated semantic frame. Vcommands contains the activation levels

of the acoustic units that are observed in each command: each entry contains the

activation level of an acoustic unit in a command.

The two V matrices, Vframes and Vcommands, are vertically concatenated, as shown

in Fig. 2(a), and decomposed into two W matrices, Wframes and Wcommands, and

one H matrix. The columns in Wframes and Wcommands represent discovered latent

acoustic patterns. Wframes contains the associations of these patterns with the slot

values in the semantic frames, and Wcommands contains the associations with the

acoustic units observed in the commands. The matrix H contains the activation

levels of the discovered acoustic patterns in each command. Wframes constitutes the

initial mapping between the relevant command units – which are now the discovered

acoustic patterns rather than the original acoustic units – and the slot values, as

shown in Fig. 1. For more details regarding the NMF process for latent acoustic

pattern discovery, we refer to (Ons et al., 2014) and (Van hamme, 2008).

In the work presented in this paper, textual input is used instead of audio input,

as explained in the introduction. The NMF process is the same as with audio input,

as depicted Fig. 2(a), except that the rows in Wcommands and Vcommands represent

textual units instead of acoustic units, i.e. word or phoneme n-grams. The recurring

patterns that are discovered by NMF are not used in our experiments with textual

input, because the textual units themselves are the relevant units that should be

associated with slot values in the semantic frames. Therefore, we post-multiply

Effective weakly supervised semantic frame induction 7

(a)

Vframes
sl

o
t

v
a

lu
e

co
m

m
a

n
d

 u
n

it

command

sl
o

t
v
a

lu
e

co
m

m
a

n
d

 u
n

it

latent pattern

command

la
te

n
t

p
a

tt
e

rn

x≈

Vcommands

Wframes

Wcommands

H

(b)

Wcommands

co
m

m
a

n
d

 u
n

it

latent pattern

co
m

m
a

n
d

 u
n

it

slot value

Wframes

T

slot value

la
te

n
t

p
a

tt
e

rn

x = Wmultipl

Fig. 2. The NMF process (a) and the post-multiplication of Wcommands by the

transpose of Wframes (b). In both (a) and (b), the input is shown on the left-hand

side and the output is shown on the right-hand side of the equation.

Wcommands by the transpose of Wframes, as depicted in Fig. 2(b). This results in

a matrix Wmultipl, with rows representing textual command units and columns

representing slot values in the semantic frames. In our experiments, Wmultipl is used

as the initial mapping between slot values and command units, which is depicted

in Fig. 1 as the result of the NMF process.

2.1.2 Baseline HMM

In HMMs, observed sequences are assumed to be generated by an underlying se-

quence of hidden states. In the HMMs that are used in the ALADIN framework,

the commands are the observed sequences (be it acoustic or textual). In the exper-

iments presented in this paper, with textual command input, they are sequences of

word n-grams or phoneme n-grams.

The hidden states in the HMM are the slot values in the semantic frames. The

basic HMM structure is depicted in Fig. 3. This figure shows the HMM of one

semantic frame type. In an application where multiple semantic frame types are

used, several of these HMMs are connected in parallel; one for each frame type.

The slot value states in the single-frame HMM are almost fully connected. The

only transitions that are prohibited, are transitions between slot values that belong

to the same slot (apart from self-transitions to the same slot value, which are

allowed), and transitions involving slot values that do not occur in the training

data. The initial non-zero transition probabilities are uniformly distributed. The

8 Van de Loo and others

slot
value 1

START END

obs. obs.

slot
value 2

slot
value 3 hidden layer

observationsobs.

Fig. 3. The basic HMM structure.

transition probability distribution can be represented as a state-by-state matrix of

probabilities – in this case, a slot-value-by-slot-value matrix (see Fig. 1).

The transition and emission distributions of the states are the HMM parameters,

which are trained in an iterative procedure using the Baum-Welch algorithm (Baum,

1972). This algorithm, which is a specific version of the expectation-maximization

(EM) algorithm (Dempster et al., 1977), iteratively alternates between an expec-

tation step (E-step) and a maximization step (M-step). In the E-step, expected

state occupancy and transition counts are computed based on the current HMM

parameters and the observed sequences; in the M-step, the HMM parameters are

updated based on the counts. In ALADIN’s HMM training procedure, the seman-

tic frame supervision is used at the end of each E-step: the expected occupancy

counts of states (slot values) that do not occur in a given utterance according to

the corresponding semantic frame are set to zero, followed by re-normalization.

2.1.3 Decoding

In the decoding phase, the trained HMM is used to decode a command into a

sequence of slot values, which is subsequently converted into a semantic frame.

First, unknown command units, which have not occurred in the training data, are

mapped to the most similar known unit from the training data using ADAPT

(Elffers et al., 2005). ADAPT is a dynamic programming algorithm that computes

the minimum edit distance between two strings of phonetic symbols, based on

articulatory features.

The Viterbi algorithm (Viterbi, 1967) is then used to find the optimal path

through the slot value states in the trained HMM, given the command. Since this

algorithm produces a single optimal path, which can only include slot values of

a single frame type, the frame type is implicitly selected. However, it is possible

that multiple slot values for a single slot occur in the resulting slot value sequence

Effective weakly supervised semantic frame induction 9

Table 1. PATCOR example transcriptions for “zwarte drie op rooie vier” (black

three on red four). “ ” indicates a word boundary.

Orthographic Phonemic

zwarte drie op rooie vier zwArt@ dri Op roj@ vir

(only direct transitions between slot values within the same slot are not allowed

in the HMM). In order to select the most probable slot value for each slot, the

posterior probabilities of the slot values in the sequence, given the emission prob-

ability distribution, are used. These posterior probabilities are accumulated across

the sequence, and for each slot, the slot value with the highest total probability is

selected. A slot is filled with the selected slot value if its total posterior probability

exceeds a certain threshold.

3 Patience dataset PATCOR

The experiments presented in this paper use a vocally guided Patience game as a

case study. Patience (also known as Solitaire) is one of the most well-known single-

player card games. The playing field (cf. Fig. 4) consists of seven columns, four

foundation stacks (top) and the remainder of the deck, called the hand (bottom).

The aim of the game is to move all the cards from the hand and the seven columns

to the foundation stacks, through a series of manipulations, in which consecutive

cards of alternating colors can be stacked on the columns and consecutive cards of

the same suit are placed on the foundation stacks.

For our experiments, we will make use of PATCOR, a dataset containing record-

ings of nine speakers playing Patience. In total, PATCOR contains over 3,000 spoken

commands, supplemented with command transcriptions, corresponding semantic

frames, and representations of game states between the moves. The language of the

spoken commands is Belgian Dutch, and the speech is non-pathological.

The speakers’ ages range between 22 and 73, and the first eight speakers were

balanced for gender and education level. With these eight speakers, around 250

utterances were recorded per speaker. In addition, a larger dataset of over 1,000

utterances was recorded with a ninth speaker, which we will use as our final means

of evaluation on held-out data (cf. Section 7). More details about the data set and

the command structures that were used by the speakers are described in (van de

Loo et al., 2012).

Transcriptions and action frames

The recorded commands were orthographically transcribed by the first author. The

orthograpic transcriptions were then converted to phonemic transcriptions, using

10 Van de Loo and others

Command: Leg de klaveren boer op de rode koningin

(English: Put the jack of clubs on the red queen)

(a) Command and corresponding action in the playing field

Frame type: movecard

Automatic Oracle

Slot Slot value Slot value

<from suit> c c

<from value> 11 11

<from foundation> - -

<from column> 3 -

<from hand> - -

<target suit> h h,d

<target value> 12 12

<target foundation> - -

<target column> 4 -

(b) automatic and oracle frames

Fig. 4. Example of a Patience command in PATCOR, the corresponding action on

the playing field (a) and the content of of the automatically generated frame and

the oracle frame that was added manually (b).

a pronunciation lexicon with only one pronunciation variant per word. The pro-

nunciation lexicon was based on the lexicon of the Spoken Dutch Corpus (CGN,

(Oostdijk, 2000)), from which the single pronunciation variants were selected man-

ually. Words not present in the pronunciation lexicon were added manually. The

phoneme alphabet used for the transcriptions is YAPA (cf. (Mertens and Vercam-

men, 1998)), as exemplified in Table 1.

Effective weakly supervised semantic frame induction 11

The commands were also annotated with their semantic representations in the

form of action frames. The action frames in PATCOR are representations of Pa-

tience moves, specifying the type of move - the frame type - and a set of attributes

in the form of slots that can be filled with values. The slots and their values specify

certain properties of the move, such as the position of the card that is moved and

the position that it is moved to.

PATCOR has two frame types: dealcard and movecard. The two frame types

and their associated slots and slot values (if any) are shown in Fig. 5. The dealcard

frame has no slots; it simply represents the action of dealing a new hand and needs

no extra attributes. The movecard frame represents a card move from one position

to another, and has nine slots. The first five slots pertain to the card that is moved

(the from slots) and the other four pertain to the card or position that it is moved

to (the target slots). Cards are specified in terms of suits (h for hearts, s for spades,

d for diamonds and c for clubs) and values (1 to 13, representing ace to king). Card

positions are also specified in terms of three areas on the playing field: the columns

(1 to 7) in the middle, the foundation stacks (1 to 4) at the top, and the hand at

the bottom (cf. Fig. 4(a)).

Each command in PATCOR has two action frames associated with it: an auto-

matic frame and an oracle frame. An example of a command, its associated move

and its two action frames is shown in Fig. 4. The automatic frame and the oracle

frame both have the same frame type and slots, but the slot values that are filled

in differ. The automatic frame was generated during the Patience game through

the move that was performed by the experimenter. In this frame, all slot values

that apply to the performed move, are filled in (see Fig. 4(b)). These are all the

relevant properties of the move, which speakers might refer to in their commands.

The automatic frame is therefore usually overspecified, i.e. containing redundant

information not expressed in the command.

The oracle frame, on the other hand, was added manually, and represents the

actual content of the command that was spoken (see Fig. 4(c)). This means that

only the slots that the command actually refers to, are filled in. In Fig. 4(c), for

instance, the card positions are not filled in, because they are not mentioned in

the command. In addition, the oracle frame may include multiple slot values for a

single slot, in cases where the command is ambiguous. In the example in Fig. 4,

the word ‘red’ is ambiguous as to the value of the slot <target suit>: it can be

either hearts (h) or diamonds (d). In such cases, the oracle frame includes all slot

values that are possible according to the command; in this case, both h and d are

included in the slot <target suit>.

In the experiments described below the automatic frames will be used to train

the systems. The manually created oracle frames will function as gold-standard

reference points against which we can evaluate.

4 System extensions

The architecture described in Section 2.1 provides a full semantic frame induction

framework, enabling training and decoding with both textual and acoustic com-

12 Van de Loo and others

Frame type: movecard

Slot Slot values

<from suit> (FS) h,d,s,c

<from value> (FV) 1-13

<from foundation> (FF) 1-4 Frame type: dealcard

<from column> (FC) 1-7 Slot Slot values

<from hand> (FH) 1 - -

<target suit> (TS) h,d,s,c

<target value> (TV) 1-13

<target foundation> (TF) 1-4

<target column> (TC) 1-7

Fig. 5. The two frame types in PATCOR, including their slots and the possible slot

values. The full slot names are in angle brackets; the abbreviated slot names are in

round brackets. The frame type dealcard does not have any slots.

slot 1

START END

START END
filler 1.1

obs. obs.

filler 1.1
 slot
value 1.1

slot 2 slot 3 hidden layer 1

hidden layer 2

observations

Fig. 6. The modified, hierarchical HMM structure, which includes an extra hidden

layer and filler states.

mand input. However, there is much room for improvement of this basic system. In

this section, we present some system extensions under consideration in this paper:

two enrichments to the HMM structure and a novel technique called expression

sharing. We will discuss these in the following subsections.

Effective weakly supervised semantic frame induction 13

4.1 Slot-based transition probability sharing

In the basic HMM, the hidden layer only represents slot values; these are the val-

ues that have to be induced by the system in order to fill in a complete semantic

frame. In most commands, however, the underlying command structure is better

defined in terms of slot sequences than in terms of sequences of slot values; transi-

tion probabilities hold between slots rather than individual slot values. For instance,

the transition probability between the slots <target suit> and <target value>

should be independent of their specific slot values. This intuition has been im-

plemented in ALADIN’s HMM structure by sharing, or equalizing, the transition

probabilities between all pairs of slot values belonging to a particular pair of slots.

This introduces an extra layer in the HMM, resulting in a hierarchical HMM

(HHMM), as depicted in Fig. 6: the highest-level hidden layer is now a layer of slot

states, where each slot state models a sequence of acoustic events corresponding to

at least a word. Each slot state has multiple sub-HMMs that model its different

slot values. The states in the slot value sub-HMMs generate observations (command

units); slot value states generate command units expressing a specific slot value,

and filler states generate so-called filler units (cf. Section 4.2).

The gain from this hierarchical architecture is a reduction in the number of tran-

sition probabilities to be estimated. Without hierarchy, each slot value can have an

arbirary transition probability to the next slot value. In an HHMM, all transitions

pass through the non-emitting START and END states in layer 2 of Fig. 6, hence

factorising the full transition matrix into the outer product of two vectors. Sharing

HMM parameters in this way reduces the number of parameters to be learned,

which should reduce the amount of training data needed. During training, transi-

tion probability sharing is carried out after the M-step in each Baum-Welch training

iteration, by averaging the re-estimated transition probabilities across shared tran-

sitions before normalizing them. Slot values that do not occur in the training set

are excluded from sharing.

The HHMM also provides the framework for sharing emission densities, again

with the goal of reducung the number of model parameters and hence the training

data requirements. Two forms of emission tying are exploited: sharing of filler states

and expression sharing.

4.2 Filler states

These filler states are introduced in order to deal with command units that do

not express specific slot values, for instance function words such as determiners or

prepositions, and interjections such as ‘uh’ (‘erm’) and ‘nee’ (‘o’). Many of these

filler units can serve as signal words that indicate certain slot expressions before

or after them, for instance in the case of prepositions. In our framework, the filler

states are associated with specific slot value states: each slot value state is preceded

by a dedicated filler state, which can optionally be skipped.

The filler states have a shared initial emission probability distribution. This ini-

tial distribution is produced by adding an extra ‘filler unit’ column to the matrix

14 Van de Loo and others

Wframes in NMF, which is activated for all commands. In the HMM training phase,

the emission probability distributions of the filler states can optionally be shared.

4.3 Expression sharing

In many applications, there are sets of slot values that are very likely to be expressed

by the same words. For instance in the Patience application, we can assume that

the slot values in the slot <from suit> are expressed by the same words as the

slot values in the slot <target suit>, e.g. by the words ‘hearts’, ‘spades’, ‘clubs’

and ‘diamonds’ in English. In traditional approaches, this property is typically not

considered during semantic frame slot filling. In this paper, we introduce expression

sharing, a novel technique to incorporate this knowledge in the system. This is done

by sharing the associations of these slot values with observed units in the commands.

The sets of slots that share their slot value expressions are called shared expression

sets. Expression sharing can also reduce the amount of training data needed, since

it decreases the number of associations between slot values and command units that

have to be learned by the system.

In many cases, the shared expression sets that are defined, are sets of slots that

are essentially specific instances of a more general slot type. For instance, the slots

<from suit> and <target suit> can be regarded as instances of a more general

slot type <suit>. Expression sharing is therefore akin to the concept of discerning

different slot types in the semantic frame definitions, such as the slot types ‘City’

and ‘Date’ in the Air Travel Information System (ATIS) domain (Hemphill et al.,

1990; Dahl et al., 1994).

In the ALADIN framework, expression sharing can be applied at two different

stages in the training process: during the NMF phase and during the HMM training

phase. In the NMF phase, expression sharing is applied as follows: when a slot value

that is part of a shared expression set is encountered in a training instance, the other

corresponding slot values in the shared expression set are activated as well in that

training instance. For example, if an instance’s semantic frame contains the slot

value <from suit=h>, the slot value <target suit=h> is also activated in that

instance. A complete example is shown in Table 2.

In the HMM training phase, expression sharing is applied by sharing the emis-

sion probability distributions of corresponding slot values in a shared expression

set. After the M-step in each Baum-Welch pass, the re-estimated emission prob-

ability distributions are averaged across the corresponding slot value states (for

instance, across the states <from suit=h> and <target suit=h>), before they

are normalized.

Expression sharing in the HMM training phase is not only applied to sets

of corresponding slot value states, but also to sets of filler states. Two options

were implemented regarding filler state expression sharing. The first option is

to share the emission probabilities across all filler states, resulting in one single

filler state emission probability distribution. The second option is to share the

filler state emission probability distributions slot-wise, which means that the emis-

sions are shared among filler states that belong to the same slot. For instance,

Effective weakly supervised semantic frame induction 15

Command: harten acht op schoppen negen

(English: eight of hearts on nine of spades)

Original frame Additional frame

supervision supervision

FS=h TS=h

FV=8 TV=8

FC=2 TC=2

TS=s FS=s

TV=9 FV=9

TC=4 FC=4

Table 2. Example of expression sharing in the NMF phase: the slot values in the

right column are added to the instance’s frame supervision.

the emissions of the filler states associated with the slot values <from suit=h>,

<from suit=s>, <from suit=c> and <from suit=d> are shared, resulting in one

single <from suit> filler state emission probability distribution. The use of slot

specific filler state emissions is similar to the use of slot specific preamble and

postamble states in (Wang and Acero, 2006); they can serve as contextual clues for

identifying the slot.

We can expect expression sharing to be a powerful extension to traditional HMM-

driven semantic frame induction. It can typically be applied when concepts that

need to be induced, are subtypes of a more general concept (or are used in different

contexts). In the context of ATIS (Hemphill et al., 1990), for example, departure city

and destination city are both subtypes of a more general concept ’city’. Expression

sharing would enable the discovery of this property. While expression sharing is

able to solve a number of issues, it does not enable processing quantifiers or the

induction of deep hierarchic concept spaces.

5 Experimental Setup

In this paper, we investigate the effect of the system extensions discussed in the

previous section on the system’s semantic frame induction capabilities. We focus

on the following research questions:

1. Do transition probability sharing and expression sharing have the expected

positive effect on learning speed, and how large are the effects of the different

sharing types?

2. Do these extensions introduce specific decoding errors?

3. How does the introduction of filler states affect the semantic frame induction

performance and what effect do the different types of filler state emission

probability sharing have?

16 Van de Loo and others

5.1 System parameters

In order to investigate these effects in controlled conditions, we perform exhaus-

tive experiments with four system variables, based on the extensions discussed in

Section 4:

Parameter Values

Filler states none, non-shared, all-shared, slot-shared

T (transition) sharing true, false

E (expression) sharing in NMF true, false

E (expression) sharing in HMM true, false

The parameter ‘filler states’ has four possible values: there can be no fillers (‘none’),

fillers without emission sharing (‘non-shared’), fillers that all share their emission

probability distributions (‘all-shared’), or fillers that share their emission proba-

bility distributions slot-wise (‘slot-shared’), which means that the distributions of

fillers that belong to the same slot are shared. The other three parameters are

booleans. T-sharing (transition-sharing) means that the transition probabilities are

shared slot-wise, as discussed in Section 4.1 and depicted in Fig. 6. The two remain-

ing parameters are two different types of expression sharing applied to slot value

states in respectively the NMF phase and the HMM phase.

5.2 Decoding methods

Apart from the parameter variation listed in Section 5.1, we also experimented with

two decoding methods: NMF decoding and HMM decoding. HMM decoding is the

decoding method that was described in Section 2.1.3, using the trained HMM. NMF

decoding, on the other hand, is a baseline decoding method in which only NMF is

used. This decoding method does not model any information about the temporal

ordering of the command units. The matrix with the associations between slot

values and command units, which has been produced in the NMF training phase,

is used to convert the sequence of command units into a sequence of slot value

activations (slot value probability distributions). For each slot value, all activations

across the whole sequence are accumulated, and for each slot in each frame, the

slot value with the highest accumulated activation is selected, if that activation

exceeds a certain threshold. Since this method can result in the selection of slot

values from different frames, the frame with the highest accumulated probability

mass is selected.

5.3 Command input

We also vary the input type during our experiments, to study the effect of command

unit granularity on the performance of the frame induction approach. In the ex-

periments reported here, we only use phonemic gold-standard transcriptions (Table

Effective weakly supervised semantic frame induction 17

1 on the right). Different segmentations of the transcriptions are used. The tran-

scriptions were segmented into word unigrams, word bigrams, phoneme unigrams

or phoneme bigrams, as exemplified in the following example:

Orthographic: zwarte drie op rode vier (black three on red four)

Word unigrams: /zwArt@/ /dri/ /Op/ /roj@/ /vir/

Word bigrams: /+ zwArt@/ /zwArt@ dri/ /dri Op/ /Op roj@//roj@ vir/

/vir +/

Phoneme unigrams: /z/ /w/ /A/ /r/ /t/ /@/ /d/ /r/ /i/ /O/ /p/ /r/ /o/ /j/ /@/

/v/ /i/ /r/

Phoneme bigrams: /+z/ /zw/ /wA/ /Ar/ /rt/ /t@/ /@d/ /dr/ /ri/ /iO/ /Op/

/pr/ /ro/ /oj/ /j@/ /@v/ /vi/ /ir/ /r+/

Note that with phoneme-based input, the word boundaries are omitted, while with

word-based input, they are preserved. For the formation of bigrams, the ‘+’ sign

was used as an extra command unit at the beginning and the end of the utterance.

5.4 General setup

Each configuration, with its unique combination of parameter values and input

type, was tested with the data of the first eight speakers in PATCOR. In addition,

experiments were conducted with the baseline NMF decoding method, with one

parameter variation: the optional use of an extra ‘filler unit’ column in the matrix of

slot value activations. We tested the system configurations with increasing amounts

of training data, resulting in learning curves. For each speaker, a separate learning

curve was produced, using only that speaker’s data. This setup mimics the ALADIN

system in real life: the system is trained progressively on a particular user’s data

and adapts itself to the user’s language over time as new phrases or words are

introduced over time, by retraining the system at regular intervals.

A fixed test set was selected for each speaker, and the remaining data of the

speaker were used for training. The original order of the utterances as they had

been recorded was preserved, in order to mimic the ALADIN training situation,

including possible changes in command structure over time. The test set consisted

of the last 20 movecard utterances and the surrounding dealcard utterances. We

constructed the test set around the number of movecard utterances, as accurate

decoding of the movecard utterances is the most challenging task.

The remaining training utterances were split into partitions of 25 utterances. For

each experiment, the first k partitions were used for training, with k starting at 1

and gradually increasing up to the maximum number of partitions. The command

transcriptions and the automatically generated action frames were used as training

input. For testing, only command transcriptions were used as input, and the out-

put consisted of semantic frames induced by the system. The oracle frames from

PATCOR were used as a reference for evaluation (cf. Table 3)

Each unique experiment, with a unique combination of parameters and the data

of one single speaker, was run ten times, to account for possible performance differ-

ences due to different random system initializations (for instance at the beginning

18 Van de Loo and others

of the NMF procedure). The number of HMM training iterations (Baum-Welch)

per experiment was set to twenty.

As a final evaluation experiment, we observed the best parameters and settings

established during the experiments on the eight users and applied these to held-out

data from an additional user for which more data is available. The results of this

experiment are presented in Section 7.

5.5 Scoring

Scoring was based on a comparison between the semantic frames induced by the

system and the oracle command frames in PATCOR. The used metrics are the

slot precision, recall and Fβ = 1-score. These metrics are commonly used for the

evaluation of frame-based systems for spoken language understanding (Wang et al.,

2011). The slot Fβ = 1-score is the harmonic mean of the slot precision and the slot

recall. The following formulas were used for calculation:

slot precision = # correctly filled slots / # total filled slots in induced frames

slot recall = # correctly filled slots / # total filled slots in oracle frames

slot Fβ = 1-score = 2 * slot precision * slot recall / (slot precision + slot recall)

This means that only slots that are filled with a correct value are rewarded, and

both slots that are falsely filled and slots that are falsely left empty are penalized.

When an induced frame is of another type than the corresponding oracle frame, the

filled slots in the induced frame and in the oracle frame are consequently different,

which automatically results in a relatively large drop in the slot F-score.

Various micro-averaged scores were computed, for instance micro-averaged scores

across ten different runs (with different random system initializations) of the

same experiment, and across experiments with different speakers’ data. Computing

micro-averaged scores across multiple experiments was carried out by aggregating

the slot counts (i.e. number of correctly filled slots and total number of filled slots

in induced frames and in oracle frames) of all the included experiments, and calcu-

lating the scores based on these accumulated slot counts, using the aforementioned

formulas.

6 Results & Discussion

We first consider NMF decoding as our baseline, the experimental results of which

can be found in Table 3. The best performing systems all used an extra filler unit

column in the matrix Vframes. As expected, the scores are a lot lower than the

scores with HMM decoding for most input types (Table 4), because NMF is unable

to capture the temporal aspects of the commands. The scores with word bigrams,

however, are a remarkable exception. Apparently, a sufficient amount of contextual

information is included in the word bigrams to enable the NMF procedure to disam-

biguate between different slot values as accurately as the HMM decoding procedure

can. NMF can also be observed to sacrifice precision for recall: this is due to the

Effective weakly supervised semantic frame induction 19

Table 3. Top-ranked scores with NMF decoding. All scores (Prec. = slot precision,

Rec. = slot recall, F = slot F-score) are micro-averaged scores.

all 150 training inst.

Command F Prec. Rec. F

phoneme uni 20.7 13.1 28.7 18.0

phoneme bi 52.9 45.4 70.8 55.3

word uni 58.5 57.3 65.5 61.2

word bi 73.6 76.6 85.6 80.8

Table 4. Top-ranked scores with HMM decoding for each input type, and the param-

eter values with which these top-ranked scores were produced (‘non’ under Fillers

means non-shared fillers). All scores (Prec. = slot precision, Rec. = slot recall, F =

slot F-score) are micro-averaged scores.

all 150 training inst. Parameter Values (sharing)

E

Command F Prec. Rec. F Fillers T NMF HMM

phoneme uni 86.6 91.9 94.4 93.1 slot + + +

phoneme bi 86.2 91.3 95.0 93.1 non + + -

word uni 88.0 93.8 90.8 92.3 slot + + +

all

word bi 73.0 82.1 78.5 80.3 slot - - -

all +

fact that during NMF decoding, multiple slot values can be activated per command

unit, resulting in a relatively large number of filled slots in the induced frames.

Table 4 outlines the results of the top-performing HMM configurations per com-

mand input type. The system configurations were ranked according to their over-

all micro-averaged slot F-scores, which are reported in the first column of Table

4. These scores are based on the induced frames that were aggregated across all

speakers, training set sizes and experiment runs (random initializations). The over-

all slot F-score thus takes into account the scores at all training set sizes, since the

ALADIN application demands for steep learning curves, as explained in the Intro-

duction. The next three columns of Table 4 show the micro-averaged slot scores

with 150 training utterances – the largest training set size that is shared among all

speakers – for the top-ranked systems. These scores were micro-averaged across all

20 Van de Loo and others

speakers and across ten experimental runs per speaker. The last four columns show

the parameters of the top-performing systems. For each input type, the top row

shows the parameter settings of the system with the highest overall slot F-score.

Other parameter values were added (below the first row) if at least one system with

that parameter value achieved an overall slot F-score that was not significantly lower

than the highest score. Statistical significance of the F-score differences was tested

with approximate randomization testing (as described in (Noreen, 1989)), using a

critical p-value of 0.05. Only the scores of the best-performing system are reported

for each input type.

When we look at the scores in Table 4, we see that the scores with word bigrams

are clearly lower than the scores for the other input types. This is mainly due to

data sparseness: many unknown word bigrams occur in the test data, resulting in

decoding errors. The overall slot F-scores with phoneme unigrams and phoneme

bigrams are very similar and are not much lower than those with word unigrams. It

seems that the absence of word boundary information in the input and the smaller

command unit size does not have a large impact on the slot F-scores. The slot F-

scores achieved with 150 training instances are even higher with phoneme unigrams

or bigrams than with word unigrams. However, we do see a difference in the balance

between precision and recall: with phoneme-based command units, recall is higher

than precision, whereas with word-based units, it is the other way around. The

relatively high recall and low precision with phoneme-based command units can

be attributed to the large number of units per command, which is likely to result

in more activated slot values during decoding. The balance between precision and

recall with word unigrams will be further discussed in subsection 6.2.

Looking at the parameter settings of the top-performing HMM-based systems,

in Table 4, we see some differences between the optimal settings of the different

input types. All top-performing systems use filler states, but the type of emission

probability sharing they use for the filler states, varies somewhat. All command

input types except phoneme bigrams have top-performing systems that share the

filler state emission probability distributions per slot (slot-shared). With word-based

input, sharing all filler state emissions produces practically equal results as sharing

them per slot. With phoneme bigrams, on the other hand, the best results are

produced with a system that does not apply any emission sharing to filler states.

Regarding the other three parameters – T-sharing and both types of E-sharing

applied to slot values – there are also some differences among the input types. With

phoneme or word unigrams as input, the best results are produced by systems that

use all three types of sharing. With phoneme bigrams, the top-performing system

uses T-sharing and E-sharing in the NMF phase, but no E-sharing in the HMM.

With word bigrams, the top-ranked system uses none of the three sharing types.

The effects of the different parameter settings are discussed in more detail in the

following subsections. In these subsections, we will often use the abbreviated slot

names (FS, FV, etc.), as specified in Fig. 5.

Effective weakly supervised semantic frame induction 21

(a) phoneme bigrams

50 75 100 125 150
70

75

80

85

90

95

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)

Input type: phoneme bigrams
Parameter: filler states

no fillers
fillers non−shared
fillers all−shared
fillers slot−shared

(b) word unigrams

50 75 100 125 150
68

70

72

74

76

78

80

82

84

86

88

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)

Input type: word unigrams
Parameter: filler states

no fillers
fillers non−shared
fillers all−shared
fillers slot−shared

Fig. 7. The micro-averaged slot F-scores with different conditions for filler states.

6.1 Effects of system extensions

In order to compare the parameter effects, the micro-averaged slot F-scores for

the different parameter values were plotted at different training set sizes. Figs 7

and 8 show the resulting graphs for two input types: phoneme bigrams, which is

the input type with the highest recall, and word unigrams, which is the input

type with the highest precision (cf. Table 4). The micro-averaged F-scores in the

graphs were calculated based on the aggregated set of all semantic frames that

were induced by systems with a specific parameter value. For instance, the broken

lines in Fig. 7 show the F-scores based on all semantic frames that were induced by

systems without filler states (independent of the other parameter values). The F-

scores were thus micro-averaged across all speakers, all system configurations with

a certain parameter value (with different combinations of other parameter values)

22 Van de Loo and others

(a) phoneme bigrams

50 75 100 125 150
72

74

76

78

80

82

84

86

88

90

92

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)

Input type: phoneme bigrams
Parameters: T−sharing and E−sharing

without T−sharing
with T−sharing
without E−sharing in NMF
with E−sharing in NMF
without E−sharing in HMM
with E−sharing in HMM

(b) word unigrams

50 75 100 125 150
65

70

75

80

85

90

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)

Input type: word unigrams
Parameters: T−sharing and E−sharing

without T−sharing
with T−sharing
without E−sharing in NMF
with E−sharing in NMF
without E−sharing in HMM
with E−sharing in HMM

Fig. 8. The micro-averaged slot F-scores with different conditions for T-sharing,

E-sharing in NMF and in the HMM.

and all ten runs per system configuration. The effects of the different parameter

values will be discussed individually in the following subsections.

The top-performing filler state configurations in Fig. 7 correspond to the filler

state configurations of the top-performing systems in Table 4, viz. non-shared filler

states for phoneme bigrams, and slot-shared filler states for word unigrams, followed

by all-shared filler states. However, in Fig. 7 we get a slightly different perspective

than in Table 4. We can see that with phoneme bigrams (Fig. 7(a)), non-shared

filler states produce the best results for smaller training set sizes, while for larger

training set sizes, the slot-shared and non-shared filler states yield similar top-

ranked scores. With word unigrams, the slot-shared filler states seem to have a

consistent advantage over all-shared filler states when averaging the F-scores across

all system configurations (Fig. 7(b)), while for the specific top-ranked systems in

Effective weakly supervised semantic frame induction 23

Table 4 (with T-sharing and both types of E-sharing), the overall F-score difference

between the system with slot-shared filler states and the one with all-shared filler

states was not significant.

Fig. 8 affirms that T-sharing has a positive effect for both input types. With

word unigrams, the effect is larger than the effects of the two types of E-sharing,

while with phoneme bigrams, the effect is similar in size to the effect of E-sharing in

NMF. When we look at the resulting slot value sequences, we see that they are more

consistent and accurate regarding the sequential slot structures they contain, when

T-sharing is used. For instance, the slot sequence “<from suit> <from value>

<target suit> <target value>” that occurs in a lot of commands is more con-

sistently present in the decodings.

In addition, Fig. 8 illustrates that the different types of E-sharing provide mixed

results across input types. For both phoneme bigrams and word unigrams, E-sharing

in the NMF phase has a distinctive positive effect. E-sharing in the HMM training

phase, on the other hand, has a negative effect for phoneme bigrams, and its positive

effect with word unigrams is relatively small.

Table 5 shows the effects of different E-sharing configurations when optimal T-

sharing and filler settings are used (as defined in Table 4). Both phoneme and

word unigrams benefit from E-sharing in both the NMF and HMM phase. With

phoneme and word bigrams, however, we see different effects. With word bigrams,

neither of the two E-sharing types has a positive effect, and with phoneme bigrams,

E-sharing only has a substantial positive effect when it is applied in the NMF phase

exclusively. We will discuss the effects of E-sharing in more detail in the qualitative

inspection of the decoding output below.

The effects of T-sharing and E-sharing on individual learning curves

Fig. 9 provides some additional insight into the effect of T-sharing. It displays the

learning curves of the eight speakers with word unigrams as command input for two

system configurations: the top-performing system, in which slot-shared filler states,

both types of E-sharing and T-sharing are used, and the same system without

T-sharing. The effect of T-sharing is substantial, particularly when dealing with

smaller training set sizes. For some speakers, the curves with and without T-sharing

converge with larger training set sizes; for others (speakers 4, 5, 7 and 8), T-sharing

keeps showing considerable positive effects on the F-scores up to the end of the

curves.

Qualitative inspection of decoding output

In order to explain the effects of the different E-sharing types and the differences

between them, we compared the decoding output of systems with different E-sharing

settings and equal T-sharing and filler state settings. Below, we discuss these results

in more detail, using decoding examples to demonstrate qualitative differences. We

will focus our discussion on word unigrams and phoneme bigrams.

Inspection of the induced slot value sequences revealed that the sequences in-

24 Van de Loo and others

25 50 75 100 125 150 175 200 225
20

30

40

50

60

70

80

90

100

1

1

1

1 1 1 1 1
1

1

1

1

1
1

1
1 1

1

2
2

2 2

2 2 2 2 2

2

2

2 2 2 2

2 2 2

3
3

3 3 3 3 3 3 3 3

3

3

3

3
3 3 3

3 3 3

4

4

4
4

4

4 4 4
4

4

4

4

4

4

4
4

4

4

5

5 5 5 5 5 5

5

5

5 5

5 5 5

6

6

6
6

6 6 6
6 6

6

6

6
6

6

6
6 6 6

7

7

7 7 7 7
7 7

7

7

7 7
7

7 7 7

8
8

8

8 8 8
8 8 8

8

8
8

8

8
8

8
8 8

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)
ac

ro
ss

 1
0

ru
ns

Word unigrams:
Best system vs. Best system without T−sharing

fillers slot−shared + E−sharing in NMF and HMM + T−sharing
fillers slot−shared + E−sharing in NMF and HMM

Fig. 9. Effects of T-sharing on the learning curves of the individual speakers with

word unigrams as input units. The number markers on the curves are the speaker

numbers. The solid curves show the scores with the best system for word unigrams

(as specified in Table 4), which includes T-sharing; the broken curves show the

scores with the same system without T-sharing.

duced by systems without E-sharing contain many errors pertaining to card values

(the slots <from value> and <target value>). An example of such an error is

shown in Table 6. These decoding errors result from errors in the earliest stage

of the training process: the initial mapping of words to slot values by NMF. This

mapping is impeded by the fact that subsequent card values typically co-occur in

Patience commands (e.g. two → three, three → four), making it difficult for the

frame induction engine to associate a token with the correct slot value, when only

a limited number of frames and commands have been processed.

A further consequence of the ambiguous card value mappings is that the sequen-

tial command structures are not properly learned either. In other words: the errors

in the initial emission probability distributions cause errors in the transition proba-

bility distributions which are learned during HMM training. When no E-sharing is

used, from to target transitions are not favored over target to from transitions.

In addition, the probabilities of self-transitions are strengthened due to the possi-

bility of assigning the same slot values. This is illustrated in Table 6, where we can

observe that without using E-sharing in NMF, the whole sequence is decoded as

FV=2, including the word ‘three’.

Applying E-sharing in the NMF phase solves the problem of ambiguous word-

to-slot-value mappings by adding extra slot values to the frame supervision. For

Effective weakly supervised semantic frame induction 25

Table 5. The effect of E-sharing for the different input types with optimal T-sharing

and filler state settings (as defined in Table 4). Columns 2 through 5 show the overall

slot F-scores (micro-averaged across all speakers, training set sizes and experiment

runs) with different E-sharing settings.

E-sharing

Input type none NMF HMM NMF + HMM

phoneme unigrams 80.05 86.05 85.50 86.59

phoneme bigrams 83.66 86.23 84.03 83.83

word unigrams 83.23 86.69 84.65 88.01

word bigrams 73.01 72.75 70.78 71.21

Table 6. The induced slot value sequences for an example sentence at training size

50 with different types of E-sharing. The first column contains the original input, i.e.

the phonemic transcription of the Dutch utterance (one word per row), the second

column contains the English translation in orthographic format, and the last four

columns contain the slot value sequences resulting from the HMM decoding process.

Decoding errors are marked in bold.

E-sharing types

Command none NMF HMM NMF + HMM

/d@/ the filler FV=2 filler FV=2 filler FV=2 filler FV=2

/twe/ two FV=2 FV=2 FV=2 FV=2

/Op/ on FV=2 TS=s FV=2 filler TV=3

/d@/ the FV=2 filler TV=3 FV=2 filler TV=3

/dri/ three FV=2 TV=3 FV=2 TV=3

each from slot value, the corresponding target slot value is added to the frame

supervision, and the other way around, because from slots and their corresponding

target slots form shared expression sets. The column E-sharing in NMF and HMM

in Table 6 shows that adding E-sharing in the HMM on top of E-sharing in NMF

corrects the remaining errors in this example.

The fact that E-sharing in the HMM phase has a smaller positive effect on the

slot F-scores with word unigrams as input type is partly due to the later stage in

which sharing takes place. E-sharing in NMF can make major differences in the

emission and transition probabilities, because it provides a better starting point

for HMM learning, while E-sharing in the HMM can only regulate the last part of

the learning process. In addition, E-sharing in the HMM phase applies expression

26 Van de Loo and others

sharing in a more subtle way than E-sharing in the NMF phase. Rather than adding

extra associations between slot values and command units, the association strengths

between from and target slot values and the command units that express them,

are averaged amongst each other (for instance, the probabilities of the emissions

FV=3 –> three and TV=3 –> three are averaged).

Table 5 shows that E-sharing has less of a positive effect with bigram input

types. This can be explained by the fact that E-sharing can introduce errors in the

mappings between slot values and command units when bigrams are used as input.

This is illustrated by the following example, which shows the start of the command

“harten acht op schoppen negen” (eight of hearts on nine of spades):

Command Original frame Additional frame

supervision supervision (E-sharing)

/+h/ FS=h TS=h

/hA/ FS=h TS=h

/Ar/ FS=h TS=h

/rt/ FS=h TS=h

/t@/ FS=h TS=h

/@A/ FV=8 TV=8

/Ax/ FV=8 TV=8

/xt/ FV=8 TV=8

/tO/ FV=8 TV=8

/Op/ Filler Filler

/ps/ TS=s FS=s

/sX/ TS=s FS=s

/XO/ TS=s FS=s

...

In this example, the slot values in the frame supervision are aligned with the com-

mand units they are likely to be mapped to in the NMF phase when E-sharing is

applied. In this case, the additional mappings, caused by the frame supervision that

is added by applying E-sharing, are not all correct; see the errors marked in bold.

For instance, the unit /ps/ should unequivocally express TS=s (due to the presence

of the prefiller op in the bigram), but is here erroneously marked as FS=s as well.

Such incorrect mappings typically occur with bigrams that cross word boundaries.

This can furthermore explain the E-sharing effects in Fig. 7(c). With phoneme

bigrams, E-sharing in NMF still has a large positive effect because of its disam-

biguation of the slot value mappings, as explained previously. It also introduces

some errors in the slot value mappings, but only for command units that cross

word boundaries. In addition, these errors can still be corrected in the HMM train-

ing phase, if no E-sharing is applied there. When E-sharing is applied in the HMM

training phase, the same type of mapping errors are introduced, but in that case,

Effective weakly supervised semantic frame induction 27

they cannot be corrected anymore. This also explains why only applying E-sharing

in the NMF phase yields better scores than applying E-sharing both in the NMF

phase and in the HMM training phase, as shown in Table 5.

In summary, applying E-sharing in the NMF phase yields better results than

applying it in the HMM training phase, because applying it at an early stage allows

it to have a relatively large positive effect, and the possible errors that it introduces

– in case of bigram-based input – can still be corrected at a later stage of the

learning process.

6.2 Most frequent errors with optimal settings

We analyzed the remaining errors that occurred with the optimal settings and

concentrate on the most frequent errors with word unigrams as input type at 150

training utterances. As can be seen in Table 4, the recall was lower than the precision

(90.78% vs. 93.84%) when word unigrams were used. The most frequent error, which

had a negative effect on the recall, was that utterances such as “aas naar boven”,

in which the ace was moved to one of the foundation stacks, were often tagged as

sequences of one single repeated slot value: either FV=1 or some TF value. This

error occurred with almost all speakers and is due to the fact that the ace is always

moved to a foundation stack and not in the playing field below.

Other errors that occurred frequently are incorrectly tagged interjections such as

‘uh’, ‘ja’, etc. Sometimes these errors also percolated to other parts of the utter-

ances. In some cases, the interjection was an unknown word, and the error could

have been prevented by ignoring the word instead of mapping it onto a similar

known word, as we did now. Apart from short interjections, other disfluencies such

as restarts were amongst the main causes for error.

7 Evaluation experiments with optimal settings

We carried out evaluation experiments with the optimal settings that were estab-

lished in the previous experiments. The optimal settings are shown in Table 4.

For these experiments, we used speaker 9’s data subset, which was not used in

the previous experiments and is much larger than the data subsets of speakers 1

through 8. It consists of 1,142 commands and corresponding semantic frames. The

last 200 movecard commands and the surrounding 211 dealcard commands were

used as a test set, and the remaining commands – 440 movecard commands and 291

dealcard commands – were used for training. As in the previous experiments, the

training set was divided into partitions of 25 utterances, and increasing numbers

of partitions were used for training in order to produce learning curves. For word

bigrams, we carried out evaluation experiments with two system configurations: the

overall optimal configuration – using NMF decoding instead of using an HMM –

as well as the optimal configuration with the use of an HMM (see Table 4). All

experiments were carried out ten times, and micro-averaged precision, recall and

F-scores were calculated in the same way as in the previous experiments.

Figure 10 shows the resulting learning curves for movecard commands (Fig. 10(a))

28 Van de Loo and others

(a)

0 100 200 300 400 500 600 700
50

55

60

65

70

75

80

85

90

95

100

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)
ac

ro
ss

 1
0

ru
ns

Speaker 9: Learning curves with optimal settings
Test subset: movecard commands.

Phoneme unigrams
Phoneme bigrams
Word unigrams
Word bigrams

(b)

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Training set size (# commands)

M
ic

ro
−

av
er

ag
ed

 s
lo

t F
−

sc
or

e
(%

)
ac

ro
ss

 1
0

ru
ns

Speaker 9: Learning curves with optimal settings
Test subset: dealcard commands.

Phoneme unigrams
Phoneme bigrams
Word unigrams
Word bigrams

Fig. 10. Learning curves resulting from evaluation experiments with speaker 9’s

data, using the optimal parameter settings for each input type. The scores for the

movecard commands are shown in graph (a); the scores for the dealcard commands

are shown in graph (b).

and dealcard commands (Fig. 10(b)). With phoneme unigrams or bigrams and

word unigrams, the F-scores for movecard commands are already between 90%

and 95% with only 50 training commands (which is an average game of Patience).

These curves start to level off at 100 training commands, between 94% and 95%,

but the errors that are made are mainly due to the fact that the word heer (king),

which appears quite regularly in the test set, only starts to appear in the training

set after the 200th command (until then, the speaker uses the synonym koning

Effective weakly supervised semantic frame induction 29

instead). With word unigrams, the first appearances of heer in the training set

directly result in a leap up to approximately 97%. With phoneme unigrams and

bigrams, the leap appears later, at 450 training commands, once the word heer has

appeared in both the from and the target position. That leap results in F-scores

of around 99%, which is a bit higher than the maximum score that is reached with

word unigrams (around 98%, above 500 training commands). With word bigrams,

the scores are lower than with the other input types and simple NMF decoding

mostly outperforms HMM decoding. This corresponds to the scores we saw in the

previous experiments. Once the word heer starts to appear in the training data (at

training size 225), the scores go up to about 93%.

In Figure 10(b), the learning curves for the dealcard commands are shown. With

phoneme and word unigrams, the F-scores for dealcard commands are approxi-

mately 100% even with small training set sizes. With bigrams, however, the F-scores

are lower for training set sizes below 200 commands. This is caused by the fact that

in those smaller training sets, dealcard utterances are always “nieuwe kaarten

omdraaien”, while in many dealcard commands after that, the word “nieuwe” is

omitted. In the dealcard commands in the test set, the word “nieuwe” is omitted

as well.

8 Conclusion & Future Work

Our contribution to the state-of-the-art in the field of semantic frame induction, is

threefold. Firstly, we presented a new application context for the task of weakly su-

pervised semantic frame induction, viz. a speaker-dependent vocal interface geared

towards physically impaired users that automatically learns a user’s specific pro-

nunciation, vocabulary and command structure from a small set of commands and

associated controls. The weak supervision consists of automatically generated se-

mantic frames, of which the slots are not aligned with segments in the commands,

and which usually contain redundant information that is not expressed in the com-

mands. Secondly, we described a framework based on NMF and HMM learning to

complete this task, and some system extensions to improve its performance: HMM

structure extensions and expression sharing. Unlike most SLU systems, our system

directly induces frame slots and their values, while the HMM structure extensions

keep the parameter space manageable. Thirdly, we presented a detailed analysis

of the effects of the system extensions, based on textual command input (tran-

scriptions). The used corpus is PATCOR, which contains Dutch-spoken commands

in the context of a voice-controlled card game. Apart from using command input

based on word unigrams, as is usually done in SLU research, we also experimented

with word bigrams, phoneme unigrams and phoneme bigrams as observed command

units.

In general, the results show positive effects of all the described system extensions.

Sharing transition probabilities, resulting in a hierarchical HMM, has a considerable

positive effect on the learning speed with all input types except word bigrams. The

addition of filler states to deal with words that do not express slot values also shows

positive effects, and the best results were produced with filler states that shared

30 Van de Loo and others

their emission probabilities slotwise. Expression sharing in the NMF phase has a

positive effect for all input types except word bigrams, whereas expression sharing

in the HMM phase only has positive effects with (word or phoneme) unigrams as

input. The more positive effect of expression sharing in the NMF phase is mainly

due to its early application in the learning process, which makes the improvement

(viz. with unigram input) relatively large and enables the system to correct possible

negative effects (viz. with bigram input) in a later learning stage.

Finally, evaluation experiments with the top-performing system configurations

on held-out data show very encouraging learning results. With word unigrams,

phoneme unigrams and phoneme bigrams as input types, scores between 90% and

95% can already be achieved with only 50 training utterances, and the main error

cause was a late shift in the speaker’s vocabulary. With larger training sets, in

which this inconsistency was resolved, F-scores up to 98% (with word unigrams)

and 99% (with phoneme unigrams and bigrams) were achieved, further underlining

the system’s ability to adapt to changes in language use over time.

In future research, we plan to evaluate our extended ALADIN semantic frame

induction system on other datasets. The scene description task in (Roy, 2002) in-

volves learning words and syntax on the basis of redundant sets of visual features.

Similarly, the Robocup Sportscasting dataset (Chen and Mooney, 2008) contains ut-

terances of humans commenting on simulated Robocup soccer games, coupled with

(redundant) semantic descriptions of the scenes. The latter dataset has received a

lot of attention with previous research efforts focusing on aligning utterances with

frames (Liang et al., 2009) and learning semantic parsers (Chen and Mooney, 2008;

Chen et al., 2010; Kim and Mooney, 2010; Börschinger et al., 2011). The ALADIN

approach may provide an interesting addition to the state-of-the-art for this dataset,

as it offers a relatively straightforward framework for semantic frame slot filling on

the basis of utterances.

In the context of the ALADIN project, we will perform additional experiments

in which we use the output of the frame induction engine presented in this work, as

training data for a discriminative concept tagger (van de Loo et al., 2012). Exper-

iments show that this post-processing step further improves F-scores, as this type

of concept tagging is able to take more context into account during classification.

Finally, we will also evaluate performance of the frame induction technique and its

extensions using acoustic units as input type, as well as experiments on a home

automation dataset containing both non-pathological and pathological speech.

Acknowledgments

This research described in this paper was funded by IWT-SBO grant 100049 (AL-

ADIN). The PATCOR dataset is available at https://github.com/clips/patcor.

References

Baum, L. E. (1972). An equality and associated maximization technique in statistical
estimation for probabilistic functions of markov processes. Inequalities, 3:1–8.

https://github.com/clips/patcor

Effective weakly supervised semantic frame induction 31

Bonneau-Maynard, H., Quignard, M., and Denis, A. (2009). Media: a semantically an-
notated corpus of task oriented dialogs in french. Language Resources and Evaluation,
43(4):329–354.

Börschinger, B., Jones, B. K., and Johnson, M. (2011). Reducing grounded learning tasks
to grammatical inference. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1416–1425. Association for Computational Linguis-
tics.

Chang, H.-P. (1993). Speech input for dysarthric users. The Journal of the Acoustical
Society of America, 94(3):1782–1782.

Chen, D. L., Kim, J., and Mooney, R. J. (2010). Training a multilingual sportscaster:
Using perceptual context to learn language. Journal of Artificial Intelligence Research,
37(1):397–436.

Chen, D. L. and Mooney, R. J. (2008). Learning to sportscast: a test of grounded language
acquisition. In Proceedings of the 25th international conference on Machine learning,
pages 128–135. ACM.

Chen, D. L. and Mooney, R. J. (2011). Learning to interpret natural language navigation
instructions from observations. In Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI’11, pages 859–865. AAAI Press.

Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao, C.,
Rudnicky, A., and Shriberg, E. (1994). Expanding the scope of the atis task: The atis-3
corpus. In Proceedings of the Workshop on Human Language Technology, HLT ’94,
pages 43–48, Stroudsburg, PA, USA. Association for Computational Linguistics.

Della Pietra, S., Epstein, M., Roukos, S., and Ward, T. (1997). Fertility models for
statistical natural language understanding. In Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics, pages 168–173.

Dempster, A. P., Laird, N. M., Rubin, D. B., et al. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal statistical Society, 39(1):1–
38.

Dinarelli, M., Quarteroni, S., Tonelli, S., Moschitti, A., and Riccardi, G. (2009). An-
notating spoken dialogs: from speech segments to dialog acts and frame semantics.
In Proceedings of the 2nd Workshop on Semantic Representation of Spoken Language,
pages 34–41. Association for Computational Linguistics.

Elffers, B., Van Bael, C., and Strik, H. (2005). Adapt: Algorithm for dynamic align-
ment of phonetic transcriptions. manual available online from http://lands. let. ru.
nl/literature/elffers. 2005.1. pdf.

Epstein, M., Ward, T., Della Pietra, S., Papineni, K., and Roukos, S. (1996). Statistical
natural language understanding using hidden clumpings. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing 1996 (ICASSP-96), volume 1, pages
176–179. IEEE.

Goldwasser, D. and Roth, D. (2014). Learning from natural instructions. Mach. Learn.,
94(2):205–232.

Hahn, S., Dinarelli, M., Raymond, C., Lefevre, F., Lehnen, P., de Mori, R., Moschitti, A.,
Ney, H., and Riccardi, G. (2011). Comparing stochastic approaches to spoken language
understanding in multiple languages. IEEE Transactions on Audio, Speech & Language
Processing, 19(6):1569–1583.

Hawley, M. S., Enderby, P., Green, P., Cunningham, S., Brownsell, S., Carmichael, J.,
Parker, M., Hatzis, A., O’Neill, P., and Palmer, R. (2007). A speech-controlled envi-
ronmental control system for people with severe dysarthria. Medical Engineering &
Physics, 5(29):586 – 593.

Hemphill, C. T., Godfrey, J. J., and Doddington, G. R. (1990). The atis spoken language
systems pilot corpus. In Proceedings of the Workshop on Speech and Natural Language,
HLT ’90, pages 96–101, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

32 Van de Loo and others

Kim, J. and Mooney, R. J. (2010). Generative alignment and semantic parsing for learn-
ing from ambiguous supervision. In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pages 543–551. Association for Computational
Linguistics.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791.

Liang, P., Jordan, M. I., and Klein, D. (2009). Learning semantic correspondences with
less supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 1 - Volume 1, ACL ’09, pages 91–99, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Macherey, K., Och, F. J., and Ney, H. (2001). Natural language understanding using
statistical machine translation. In INTERSPEECH, pages 2205–2208.

Mertens, P. and Vercammen, F. (1998). Fonilex manual. Technical report, K.U.Leuven -
CCL.

Mykowiecka, A., Marasek, K., Marciniak, M., Rabiega-Wisniewska, J., and Gubrynowicz,
R. (2009). Annotated corpus of polish spoken dialogues. In Vetulani, Z. and Uszkoreit,
H., editors, Human Language Technology. Challenges of the Information Society, volume
5603 of Lecture Notes in Computer Science, pages 50–62. Springer Berlin Heidelberg.

Noreen, E. W. (1989). Computer intensive methods for testing hypotheses: an introduction.
Wiley, New York.

Ons, B., Gemmeke, J. F., and Van hamme, H. (2014). Fast vocabulary acquisition in an
nmf-based self-learning vocal user interface. Computer Speech & Language, 28(4):997 –
1017.

Ons, B., Tessema, N., van de Loo, J., and Gemmeke, J. F. (2013). A self learning vocal
interface for speech-impaired users. Proceedings SLPAT 2013, pages 1–9.

Oostdijk, N. (2000). The spoken dutch corpus. overview and first evaluation. In Proceedings
of Second International Conference on Language Resources and Evaluation (LREC),
pages 887?–894.

Pieraccini, R., Levin, E., and Lee, C.-H. (1991). Stochastic representation of conceptual
structure in the atis task. In HLT, pages 121–124. Morgan Kaufmann.

Roy, D. K. (2002). Learning visually grounded words and syntax for a scene description
task. Computer Speech & Language, 16(3):353–385.

van de Loo, J., De Pauw, G., Gemmeke, J., Karsmakers, P., Van Den Broeck, B., Daele-
mans, W., and Van hamme, H. (2012). Towards shallow grammar induction for an
adaptive assistive vocal interface: a concept tagging approach. In Proceedings NLP4ITA,
pages 27–34.

Van hamme, H. (2008). Hac-models: a novel approach to continuous speech recognition.
In Proceedings INTERSPEECH, pages 2554–2557.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269.

Wang, Y. and Acero, A. (2006). Rapid development of spoken language understanding
grammars. Speech Communication, 48(3-4):390–416.

Wang, Y., Deng, L., and Acero, A. (2011). Semantic frame-based spoken language under-
standing. In Tur, G. and Mori, R. D., editors, Spoken Language Understanding: Systems
for Extracting Semantic Information from Speech, chapter 3, pages 41–91. Wiley, West-
Sussex, UK.

Zettlemoyer, L. S. and Collins, M. (2005). Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. In Proceedings of the
Twenty-First Conference on Uncertainty in Artificial Intelligence, UAI’05, pages 658–
666, Arlington, Virginia, United States. AUAI Press.

	1 Introduction
	2 Semantic Frame Induction
	2.1 The ALADIN approach

	3 Patience dataset PATCOR
	4 System extensions
	4.1 Slot-based transition probability sharing
	4.2 Filler states
	4.3 Expression sharing

	5 Experimental Setup
	5.1 System parameters
	5.2 Decoding methods
	5.3 Command input
	5.4 General setup
	5.5 Scoring

	6 Results & Discussion
	6.1 Effects of system extensions
	6.2 Most frequent errors with optimal settings

	7 Evaluation experiments with optimal settings
	8 Conclusion & Future Work
	References

