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Abstract

This paper presents a classifier-combination
experimental framework for named entity
recognition in which four diverse classi-
fiers (robust linear classifier, maximum en-
tropy, transformation-based learning, and hid-
den Markov model) are combined under differ-
ent conditions. When no gazetteer or other ad-
ditional training resources are used, the com-
bined system attains a performance of 91.6F
on the English development data; integrat-
ing name, location and person gazetteers, and
named entity systems trained on additional,
more general, data reduces the F-measure error
by a factor of 15 to 21% on the English data.

1 Introduction

This paper investigates the combination of a set of di-
verse statistical named entity classifiers, including a
rule-based classifier – the transformation-based learning
classifier (Brill, 1995; Florian and Ngai, 2001, hence-
forth fnTBL) with the forward-backward extension de-
scribed in Florian (2002a), ahidden Markov modelclas-
sifier (henceforth HMM), similar to the one described
in Bikel et al. (1999), arobust risk minimization classi-
fier, based on a regularized winnow method (Zhang et al.,
2002) (henceforth RRM) and amaximum entropyclas-
sifier (Darroch and Ratcliff, 1972; Berger et al., 1996;
Borthwick, 1999) (henceforth MaxEnt). This particular
set of classifiers is diverse across multiple dimensions,
making it suitable for combination:

• fnTBL is adiscriminantclassifier – it bases its clas-
sification decision only on the few most discriminant
features active on an example – while HMM, RRM
and MaxEnt areagglomerativeclassifiers – their de-
cision is based on the combination of all features ac-
tive for the particular example.

• In dealing with the data sparseness problem, fnTBL,
MaxEnt and RRM investigate and integrate in their

decision arbitrary feature types, while HMM is de-
pendent on a prespecified back-off path.

• The search methods employed by each classifier are
different: the HMM, MaxEnt and RRM classifiers
construct a model for each example and then rely
on a sequence search such as the Viterbi algorithm
(Viterbi, 1967) to identify the best overall sequence,
while fnTBL starts with most frequent classification
(usually per token), and then dynamically models
the interaction between classifications, effectively
performing the search at training time.

• The classifiers also differ in their output: fnTBL
and RRM return a single classification per exam-
ple1, while the MaxEnt and HMM classifiers return
a probability distribution.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the features used by the classifiers, Sec-
tion 3 briefly describes the algorithms used by each clas-
sifier, and Section 4 analyzes in detail the results obtained
by each classifier and their combination.

2 The Classification Method and Features
Used

All algorithms described in this paper identify the named
entities in the text by labeling each word with a tag
corresponding to its position relative to a named entity:
whether it starts/continues/ends a specific named entity,
or does not belong to any entity. RRM, MaxEnt, and
fnTBL treat the problem entirely as a tagging task, while
the HMM algorithm used here is constraining the transi-
tions between the various phases, similar to the method
described in (Bikel et al., 1999).

Feature design and integration is of utmost importance
in the overall classifier design – a rich feature space is the
key to good performance. Often, high performing classi-
fiers operating in an impoverished space are surpassed by
a lower performing classifier when the latter has access
to enhanced feature spaces (Zhang et al., 2002; Florian,

1 However, both classifiers’ algorithms can be modified such
that a class probability distribution is returned instead.



2002a). In accordance with this observation, the clas-
sifiers used in this research can access a diverse set of
features when examining a word in context, including:

• words and their lemmas in a 5-word-window sur-
rounding the current word

• the part-of-speech tags of the current and surround-
ing words

• the text chunks in a -1..1 window
• the prefixes and suffixes of length up to 4 of the cur-

rent and the surrounding words
• a word feature flag for each word, similar to the flag

described in (Bikel et al., 1999); examples of such
assigned flags arefirstCap, 2digit andallCaps.

• gazetteer information, in the form of a list of 50,000
cities, 80,000 proper names and 3500 organizations

• the output of other two named entity classifiers,
trained on a richer tagset data (32 named categories),
used in the IBM question answering system (Itty-
cheriah et al., 2001)

In addition, a ngram-based capitalization restoration al-
gorithm has been applied on the sentences that appear in
all caps2, for the English task.

3 The Algorithms

This section describes only briefly the classifiers used in
combination in Section 4; a full description of the algo-
rithms and their properties is beyond the scope of this pa-
per – the reader is instead referred to the original articles.

3.1 The Robust Risk Minimization Classifier

This classifier is described in detail in (Zhang and John-
son, 2003, this volume), along with a comprehensive
evaluation of its performance, and therefore is not pre-
sented here.

3.2 The Maximum Entropy Classifier

The MaxEnt classifier computes the posterior class prob-
ability of an example by evaluating the normalized prod-
uct of the weights active for the particular example. The
model weights are trained using the improved iterative
scaling algorithm (Berger et al., 1996). To avoid running
in severe over-training problems, a feature cutoff of 4 is
applied before the model weights are learned. At decod-
ing time, the best sequence of classifications is identified
with the Viterbi algorithm.

3.3 The Transformation-Based Learning Classifier

Transformation-based learning is an error-driven algo-
rithm which has two major steps: it starts by assigning
some classification to each example, and then automat-
ically proposing, evaluating and selecting the classifica-
tion changes that maximally decrease the number of er-
rors.

2 Usually, document titles, but also table headers, etc.

English German
(a) (b) (a) (b)

HMM 82.0 74.6 - -
TBL 88.1 81.2 69.5 68.6

MaxEnt 90.8 85.6 68.0 67.3
RRM 92.1 85.5 70.7 71.3

Tab. 1: Individual classifier results on the two test sets.

TBL has some attractive qualities that make it suitable
for the language-related tasks: it can automatically in-
tegrate heterogeneous types of knowledge, without the
need for explicit modeling, it is error–driven, and has an
inherently dynamic behavior.

The particular setup in which fnTBL is used in this
work is described in Florian (2002a): in a first phase,
TBL is used to identify the entity boundaries, followed by
a sequence classification stage, where the entities identi-
fied at the first step are classified using internal and exter-
nal clues3.

3.4 The Hidden Markov Model Classifier

The HMM classifier used in the experiments in Section
4 follows the system description in (Bikel et al., 1999),
and it performs sequence classification by assigning each
word either one of the named entity types or the label
NOT-A-NAME to represent "not a named entity". The
states in the HMM are organized into regions, one re-
gion for each type of named entity plus one for NOT-
A-NAME. Within each of the regions, a statistical bi-
gram language model is used to compute the likelihood of
words occurring within that region (named entity type).
The transition probabilities are computed by deleted in-
terpolation (Jelinek, 1997), and the decoding is done
through the Viterbi algorithm. The particular implemen-
tation we used underperformed consistently all the other
classifiers on German, and is not included.

4 Combination Methodology and
Experimental Results

The results obtained by each individual classifier, bro-
ken down by entity type, are presented in Table 1. Out
of the four classifiers, the MaxEnt and RRM classifiers
are the best performers, followed by the modified fnTBL
classifier and the HMM classifier. The error-based clas-
sifiers (RRM and fnTBL) tend to obtain balanced preci-
sion/recall numbers, while the other two tend to be more
precise at the expense of recall. To facilitate comparison
with other classifiers for this task, most reported results

3 The method of retaining only the boundaries and reclas-
sifying the entities was shown to improve the performance of
11 of the 12 systems participating in the CoNLL-2002 shared
tasks, in both languages (Florian, 2002b).



are obtained by using features exclusively extracted from
the training data.

In general, givenn classifiers, one can interpret the
classifier combination framework as combining probabil-
ity distributions:

P (C|w,Cn
1 ) = f ((Pi (C|w,Cn

1 ))i=1...n) (1)

whereCi is the classifieri’s classification output,f is
a combination function. A widely used combination
scheme is through linear interpolation of the classifiers’
class probability distribution

P (C|w,Cn
1 ) =

n∑
i=1

P (C|w, i, Ci) · P (i|w)

=
n∑

i=1

Pi (C|w,Ci) · λi (w) (2)

The weightsλi (w) encode the importance given to clas-
sifier i in combination, for the context of wordw, and
Pi (C|w,Ci) is an estimation of the probability that the
correct classification isC, given that the output of the
classifieri on wordw is Ci.

To estimate the parameters in Equation (2), the pro-
vided training data was split into 5 equal parts, and each
classifier was trained, in a round-robin fashion, on 4 fifths
of the data and applied on the remaining fifth. This
way, the entire training data can be used to estimate the
weight parametersλi (w) and Pi (C|w,Ci) but, at de-
coding time, the individual classifier outputsCi are com-
puted by using the entire training data.

Table 2 presents the combination results, for differ-
ent ways of estimating the interpolation parameters. A
simple combination method is theequal votingmethod
(van Halteren et al., 2001; Tjong Kim Sang et al., 2000),
where the parameters are computed asλi (w) = 1

n and
Pi (C|w,Ci) = δ (C,Ci), whereδ is the Kronecker op-
erator (δ (x, y) := (x = y?1 : 0)) – each of the classi-
fiers votes with equal weight for the class that is most
likely under its model, and the class receiving the largest
number of votes wins. However, this procedure may lead
to ties, where some classes receive the same number of
votes – one usually resorts to randomly selecting one of
the tied candidates in this case – Table 2 presents the av-
erage results obtained by this method, together with the
variance obtained over 30 trials. To make the decision de-
terministically, the weights associated with the classifiers
can be chosen asλi (w) = Pi (error). In this method,
presented in Table 2 asweighted voting, better perform-
ing classifiers will have a higher impact in the final clas-
sification.

In the voting methods, each classifier gave its entire
vote to one class – its own output. However, Equation
(2) allows for classifiers to give partial credit to alterna-
tive classifications, through the probabilityPi (C|w,Ci).

Method Precision Recall Fmeasure

Best Classifier 91.37% 88.56% 89.94

Equal voting 91.5±0.13 91.0±0.06 91.23±0.08
Weighted voting 92.13% 91.00% 91.56

Model 1 90.99% 90.81% 90.9
Model 2 92.43% 90.86% 91.64

RRM (Combo) 92.01% 91.25% 91.63

Tab. 2: Classifier combination results on English devset
data (no gazetteers of any kind)

Development Test
Language Unique Corpus Unique Corpus

English 33.4% 8.0% 40.3% 11.7%
German 52% 16.2% 48.6% 14.2%

Tab. 3: Word statistics (percent unknown words)

In our experiments, this value is computed through 5-
fold cross-validation on the training data. The space
of possible choices forC, w and Ci is large enough
to make the estimation unreliable, so we use two ap-
proximations, namedModel 1andModel 2 in Table 2:
Pi (C|w,Ci) = Pi (C|w)andPi (C|w,Ci) = Pi (C|Ci),
respectively. On the development data, the former esti-
mation type obtains a lower performance than the latter.

In a last experiment using only features extracted from
the training data, we use the RRM method to compute
the functionf in Equation (1), allowing the system to
select a good performing combination of features. At
training time, the system was fed the output of each clas-
sifier on the cross-classified data, the part-of-speech and
chunk boundary tags. At test time, the system was fed the
classifications of each system trained on the entire train-
ing data, and the corresponding POS and chunk bound-
ary tags. The result obtained rivals the one obtained by
model 2, both displaying a17% reduction in F-measure
error4, indicating that maybe all sources of information
have been explored and incorporated.

The RRM method is showing its combining power
when additional information sources are used. Specifi-
cally, the system was fed additional feature streams from
a list of gazetteers and the output of two other named en-
tity systems trained on 1.7M words annotated with 32
name categories. The RRM system alone obtains an F-
measure of92.1, and can effectively integrate these in-
formation streams with the output of the four classifiers,
gazetteers and the two additional classifiers into obtaining
93.9 F-measure, as detailed in Table 4, a 21% reduction
in F-measure error. In contrast, combination model 2 ob-
tains only a performance of92.4, showing its limitations

4 Measured as100− F .



in combining diverse sources of information.
German poses a completely different problem for

named entity recognition: the data is considerably
sparser. Table 3 shows the relative distribution of un-
known words in the development and test corpora. We
note that the numbers are roughly twice as large for the
development data in German as they are for English.
Since the unknown words are classed by most classifiers,
this results in few data points to estimate classifier com-
binations. Also, specifically for the German data, tradi-
tional approaches which utilize capitalization do not work
as well as in English, because all nouns are capitalized in
German.

For German, in addition to the entity lists provided, we
also used a small gazetteer of names (4500 first and last
names, 4800 locations in Germany and 190 countries),
which was collected by browsing web pages in about two
person-hours. The average classifier performance gain by
using these features is about 1.5F for thetestadata and
about .6F for thetestbdata.

5 Conclusion

In conclusion, we have shown results on a set of both
well-established and novel classifier techniques which
improve the overall performance, when compared with
the best performing classifier, by 17-21% on the English
task. For the German task, the improvement yielded by
classifier combination is smaller. As a machine learning
method, the RRM algorithm seems especially suited to
handle additional feature streams, and therefore is a good
candidate for classifier combination.
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