
Named Entity Recognition with Long Short-Term Memory

James Hammerton
Alfa-Informatica, University of Groningen

Groningen, The Netherlands
james@let.rug.nl

Abstract

In this approach to named entity recognition,
a recurrent neural network, known as Long
Short-Term Memory, is applied. The network
is trained to perform 2 passes on each sentence,
outputting its decisions on the second pass. The
first pass is used to acquire information for dis-
ambiguation during the second pass. SARD-
NET, a self-organising map for sequences is
used to generate representations for the lexical
items presented to the LSTM network, whilst
orthogonal representations are used to repre-
sent the part of speech and chunk tags.

1 Introduction

In this paper, Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) is
applied to named entity recognition, using data from
the Reuters Corpus, English Language, Volume 1, and
the European Corpus Initiative Multilingual Corpus 1.
LSTM is an architecture and training algorithm for recur-
rent neural networks (RNNs), capable of remembering
information over long time periods during the processing
of a sequence.

LSTM was applied to an earlier CoNLL shared task,
namely clause identification (Hammerton, 2001) al-
though the performance was significantly below the per-
formance of other methods, e.g. LSTM achieved an fs-
core of 50.42 on the test data where other systems’ fs-
cores ranged from 62.77 to 80.44. However, not all train-
ing data was used in training the LSTM networks. Better
performance has since been obtained where the complete
training set was used (Hammerton, unpublished), yield-
ing an fscore of 64.66 on the test data.

2 Representing lexical items

An efficient method of representing lexical items is
needed. Hammerton (2001; unpublished) employed lex-
ical space (Zavrel and Veenstra, 1996) representations of

the words which are derived from their co-occurrence
statistics. Here, however, a different approach is used.
A SARDNET (James and Miikkulainen, 1995), a self-
organising map (SOM) for sequences, is trained to form
representations of the words and the resulting representa-
tions reflect the morphology of the words.

James and Miikkulainen (1995) provide a detailed
description of how SARDNET operates. Briefly, the
SARDNET operates in a similar manner to the standard
SOM. It consists of a set of inputs and a set of map units.
Each map unit contains a set of weights equal in size to
the number of inputs. When an input is presented, the
map unit with the closest weights to the input vector is
chosen as the winner. When processing a sequence, this
winning unit is taken out of the competition for subse-
quent inputs. The activation of a winning unit is set at
1 when it is first chosen and then multiplied by a decay
factor (here set at 0.9) for subsequent inputs in the se-
quence. At the beginning of a new sequence all map units
are made available again for the first input. Thus, once a
sequence of inputs has been presented, the map units ac-
tivated as winners indicate which inputs were presented
and the activation levels of those units indicate the order
of presentation. An advantage of SARDNET is that it can
generalise naturally to novel words.

The resulting representations are real-valued vectors,
reflecting the size of the map layer in the SARDNET
(enough to represent words of upto length

�
where

�

is the size of the map). A SARDNET was trained over
a single presentation of all the distinct words that appear
in the training and development data for English and a
separate SARDNET was trained on all the distinct words
appearing in the training data for German. The generali-
sation of the map to novel words was just as good with the
German map as with the English map, suggesting training
on the map only on the English training data words would
make little difference to performance. Initially the neigh-
bourhood was set to cover the whole SARDNET and the
learning rate was set at 0.4. As each word was presented,
the neighbourhood and learning rate were reduced in lin-



Inputs Outputs

Cell

Input gate Output gate

gate activation

Cell input 
multiplied by input

Cell output
multiplied by output
gate activation

1.0

Figure 1: A single-celled memory block

ear increments, so that at the end of training the learning
rate was zero and the neighbourhood was 1. Both the En-
glish and German experiments used a SARDNET with 64
units.

3 Long Short-Term Memory (LSTM)

An LSTM network consists of 3 layers, an input layer,
a recurrent hidden layer and an output layer. The hid-
den layer in LSTM constitutes the main innovation. It
consists of one or more memory blocks each with one or
more memory cells. Normally the inputs are connected
to all of the cells and gates. The cells are connected to
the outputs and the gates are connected to other cells and
gates in the hidden layer.

A single-celled memory block is illustrated in Figure 1.
The block consists of an input gate, the memory cell and
an output gate. The memory cell is a linear unit with self-
connection with a weight of value 1. When not receiving
any input, the cell maintains its current activation over
time. The input to the memory cell is passed through a
squashing function and gated (multiplied) by the activa-
tion of the input gate. The input gate thus controls the
flow of activation into the cell.

The memory cell’s output passes through a squashing
function before being gated by the output gate activa-
tion. Thus the output gate controls the activation flow
from cells to outputs. During training the gates learn to
open and close in order to let new information into the
cells and let the cells influence the outputs. The cells oth-
erwise hold onto information unless new information is
accepted by the input gate. Training of LSTM networks
proceeds by a fusion of back-propagation through time
and real-time recurrent learning, details of which can be
found in (Hochreiter and Schmidhuber, 1997).

In artificial tasks LSTM is capable of remembering in-
formation for up-to 1000 time-steps. It thus tackles one of
the most serious problems affect the performance of re-
current networks on temporal sequence processing tasks.

Tag Vector Rep.
B-LOC 0 0 1 1 0 0 0
B-MISC 0 0 1 0 1 0 0
B-ORG 0 0 1 0 0 1 0
B-PER 0 0 1 0 0 0 1
I-LOC 1 0 0 1 0 0 0
I-MISC 1 0 0 0 1 0 0
I-ORG 1 0 0 0 0 1 0
I-PER 1 0 0 0 0 0 1
O 0 1 0 0 0 0 0

Table 1: Vector representations used for output tags

LSTM has recently been extended (Gers and Schmidhu-
ber, 2000) to include forget gates which can learn to mod-
ify the cell contents directly and peephole connections
which connect the cell directly to the gates, thus enabling
them to use the cells’ contents directly in their decisions.
Peephole connections are not used here, but forget gates
are used in some experiments.

4 Experiments

The LSTM networks used here were trained as follows:

� Each sentence is presented word by word in two
passes. The first pass is used to accumulate infor-
mation for disambiguation in the second pass. In
the second pass the network is trained to output a
vector representation (see Table 1) of the relevant
output tag. During the first pass the network is just
trained to produce “0.1”s at all its outputs. Note that
the binary patterns listed in Table 1 are converted to
“0.1”s and “0.9”s when used as target patterns. This
technique has been found to improve performance.

Net Hidden Opts Wts
Net1 8x6 13543
Net2 8x6 int 13543
Net3 8x6 int,look 18087
Net4 8x6 int,list 13898
Net5 8x6 int,look,list 18442
Net6 8x5 int2,lex 15318
Net7 8x5 int2,lex,FG 15270
Net8 8x5 int2,list,lex,FG 15625

Table 2: Networks used in the experiments here.

� The inputs to the networks are as follows:

– The SARDNET representations of the current
word and optionally the next word (or a null
vector if at the end of a sentence).
With some nets, the lexical space representa-
tion of the current word is also used. This in-



volves computing, for each word, the frequen-
cies with which the most frequent 250 words
appear either immediately before or immedi-
ately after that word in the training set. The re-
sulting 500 element vectors (250 elements each
for the left and right context) are normalised
then mapped onto their top 25 principal com-
ponents.

– An orthogonal representation of the current
part of speech (POS) tag. However, for some
networks, the input units the POS tag is pre-
sented to perform a form of time integration as
follows. The units are updated according to the
formula

���������
	�� ������������������������
, where����	�����	

,
�������

is the pattern representing the
current POS tag, and

� �!�#"$�%�&�%"('
where

'
is the

length of the current sequence of inputs (twice
the length of the current sentence due to the 2
pass processing). By doing this the network re-
ceives a representation of the sequence of POS
tags presented thus far, integrating these inputs
over time.

– An orthogonal representation of the current
chunk tag, though with some networks time in-
tegration is performed as described above.

– One input indicates which pass through the
sentence is in progress.

– Some networks used a list of named entities
(NEs) as follows. Some units are set aside cor-
responding to the category of NE, 1 unit per
category. If the current word occurs in a NE,
the unit for that NE’s category is activated. If
the word occurs in more than one NE, the units
for all the NEs’ categories are activated. In the
case of the English data there were 5 categories
of NE (though one category ”MO” seems to
arise from an error in the data).

� The networks were trained with a learning rate of
0.3, no momentum and direct connections from the
input to the output layers for 100 iterations. Weight
updating occurred after the second pass of each sen-
tence was presented. The best set of weights during
training were saved and used for evaluation with the
development data.

� The results reported for each network are averaged
over 5 runs from different randomised initial weight
settings.

Table 2 lists the various networks used in these experi-
ments. The “Net” column lists the names of the networks
used. The “Opts” column indicates whether word lists
are used (list), a 1 word lookahead is used (look), lexi-
cal space vectors are used (lex), whether the units for the

Net Precision Recall Fscore Range
Net1 61.42% 46.64% 52.98 49.16–54.30
Net2 62.42% 49.70% 55.30 53.75–56.92
Net3 62.80% 48.02% 54.41 52.24–55.74
Net4* 75.27% 64.61% 69.53 68.55–70.60
Net5* 75.03% 65.13% 69.73 68.05–70.58
Net6 67.92% 57.17% 62.08 59.26–64.14
Net7 68.04% 58.59% 62.95 61.25–64.86
Net8* 76.37% 66.27% 70.96 69.46–72.88
Basel. 78.33% 65.23% 71.18 n/a

Table 3: Results of named entity recognition on English
development data for networks trained on the English
training data. Results are averaged over 5 runs using dif-
ferent initial weights. * indicates use of the list of NEs.
Italics indicate best result reported on first submission,
whilst bold indicates best result achieved overall.

POS tags use time integration as described above (int)
and whether time integration is performed on both the
units for POS tags and the units for chunk tags (int2).
Additionally, it indicates whether forget gates were used
(FG). The “Hidden” column gives the size of the hidden
layer of the network (i.e. 8x6 means 8 blocks of 6 cells).
The “Wts” column gives the number of weights used.

Table 3 gives the results for extracting named entities
from the English development data for the networks. The
“Precision”, “Recall” and “Fscore” columns show the av-
erage scores across 5 runs from different random weight
settings. The “Range” column shows the range of fscores
produced across the 5 runs used for each network. The
Precision gives the percentage of named entities found
that were correct, whilst the Recall is the percentage of
named entities defined in the data that were found. The
Fscore is (2*Precision*Recall)/(Precision+Recall).

Most options boosted performance. The biggest boosts
came from the lexical space vectors and the word lists.
The use of forget gates improved performance despite
leading to fewer weights being used. Lookahead seems
to make no significant difference overall. Only Net8 gets
above baseline performance (best fscore = 72.88), but the
average performance is lower than the baseline.

Table 4 gives the results for the best network broken
down by the type of NE for both the English development
and testing data. This is from the best performing run for
Net8. Table 4 also depicts the best result from 5 runs of
a network configured similarly to Net7 above, using the
German data. This did not employ a list of NEs and the
lemmas in the data were ignored. The fscore of 43.501 is
almost 13 points higher than the baseline of 30.65. With
the German test set the fscore is 47.74, 17 points higher

1The average fscore on the German development set was
40.80 and the range was 36.47–43.50.



than the baseline of 30.30.

5 Conclusion

A LSTM network was trained on named entity recogni-
tion, yielding an fscore just above the baseline perfor-
mance on English and significantly above baseline for
German. Whilst the just-above-baseline performance for
English is disappointing, it is hoped that further work will
improve on these results. A number of ways of boosting
performance will be looked at including:

� Increasing the size of the hidden layers will increase
the power of the networks at the risk of overfitting.
Increasing training times may also increase perfor-
mance, again at the risk of overfitting.

� Increasing the informativeness of the lexical repre-
sentations. Given that the number of elements used
here is less than the number of characters in the char-
acter sets, there should be some scope for boosting
performance by increasing the size of the SARD-
NETs. The representations of different words will
then become more distinct from each other.

The lexical space vectors were derived from a con-
text of +/- 1 word, where in earlier work on clause
splitting a context of +/- 2 words was used. Using
the larger context and/or using more than 25 of the
top principal components may again boost perfor-
mance by incorporating more information into the
vectors.

� Further exploitation of the word lists. Whilst the net-
works are made aware of which categories of named
entity the current word can belong to, it is not made
aware of how many named entities it belongs to or
of what positions on the named entities it could oc-
cupy.

Acknowledgements

The LSTM code used here is a modified version of code
provided by Fred Cummins. The training of the SARD-
NETs was done using the PDP++ neural network simu-
lator (http://www.cnbc.cmu.edu/Resources/
PDP++/PDP++.html).

This work is supported by the Connectionist Lan-
guage Learning Project of the High Performance Com-
puting/Visualisation centre of the University of Gronin-
gen.

References
F. A. Gers and J. Schmidhuber. 2000. Long Short-Term

Memory Learns Context-Free and Context-Sensitive
Languages. Technical Report IDSIA-03-00, IDSIA,
Switzerland.

English devel. Precision Recall F �����
LOC 88.17% 82.80% 85.40
MISC 83.56% 74.95% 79.02
ORG 71.83% 62.19% 66.67
PER 70.65% 52.93% 60.52
Overall 78.95% 67.67% 72.88

English test Precision Recall F �����
LOC 79.41% 78.60% 79.00
MISC 70.20% 66.10% 68.09
ORG 69.16% 47.80% 56.53
PER 49.11% 27.15% 34.97
Overall 69.09% 53.26% 60.15

German devel. Precision Recall F �����
LOC 60.15% 41.91% 49.40
MISC 86.96% 9.90% 17.78
ORG 56.19% 29.25% 38.47
PER 55.75% 51.25% 53.40
Overall 58.36% 34.68% 43.50

German test Precision Recall F �����
LOC 64.69% 40.00% 49.43
MISC 61.61% 10.30% 17.65
ORG 54.43% 28.59% 37.49
PER 66.45% 58.66% 62.31
Overall 63.49% 38.25% 47.74

Table 4: Performance of best network from Table 3 on
English development and test data by type of NE, and
performance of the best run of a network configured sim-
ilarly to Net7 on German development and test data.

J.A. Hammerton. 2001. Clause identification with Long
Short-Term Memory. In W. Daelemans and R. Za-
jac, editors, Proceedings of the workshop on Compu-
tational Natural Language Learning (CoNLL 2001),
ACL 2001, Toulouse, France.

J. A. Hammerton. unpublished. Towards scaling up con-
nectionist language learning: Connectionist Shallow
Parsing. Unpublished manuscript.

S. Hochreiter and J. Schmidhuber. 1997. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780.

D. L. James and R. Miikkulainen, 1995. SARDNET:
A Self-0rganizing Feature Map for Sequences, pages
577–584. MIT Press, Cambridge, MA.

J. Zavrel and J. Veenstra. 1996. The language environ-
ment and syntactic word class acquisition. In Koster C.
and Wijnen F., editors, Proceedings of the Groningen
Assembly on Language Acquisition (GALA ’95).


