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1 Outline

We present a memory-based named-entity recognition
system that chunks and labels named entities in a one-
shot task. Training and testing on CoNLL-2003 shared
task data, we measure the effects of three extensions.
First, we incorporate features that signal the presence of
wordforms in external, language-specific seed (gazetteer)
lists. Second, we build a second-stage stacked classifier
that corrects first-stage output errors. Third, we add se-
lected instances from classified unannotated data to the
training material. The system that incorporates all attains
an overall F-rate on the final test set of 78.20 on English
and 63.02 on German.

2 Data and features

The CoNLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003) supplied datasets in two languages,
English and German, using four named entity cate-
gories: persons, organisations, locations, and “miscellany
names”. Manual annotation has been performed at the
University of Antwerp. Apart from tokenized wordforms,
the data provides predicted PoS-tags and chunks.

Additionally we computed the following features with
each wordform, largely following those used by the best-
performing submission of the 2002 shared task (Carreras
et al., 2002):

• Orthographic features represented as binary
features: Begincap, All caps, Internalcap,
Containsdigit, Containsdigit en alpha, Initial,
Lower case, Firstword

• The wordform’s first letter and last three letters (as
three separate features)

• The direct output of the memory-based lemmatizer
(Van den Bosch and Daelemans, 1999), provid-
ing PoS tag, morphological features, and spelling
change information

• PoS tag from a slow but accurate version of the
memory-based tagger trained on a portion of the
British National Corpus, according to the CLAWS-5
tagset (for English data only)

For example, for the English wordIndianthe following
feature representation is made:Indian NNP I-NP
1 0 0 0 0 0 0 0 I i a n AJ0-NN1 N-s
I-MISC , whereNNPis the provided PoS tag,I-NP the
chunk tag; the binary features represent the orthographic
features (where in this case onlyBegincap is positive);
AJO-NN1 is the PoS tag of the BNC-trained-tagger;
N-s is the lemmatizer output for noun-singular; the last
element,I-MISC , is the annotated class label.

In our experiments we construct instances around
wordforms, where we take a windowed snapshot of the
word in its direct local context. By default, we select a
window of two words to the left and right. For all five
words in each input instance (feature vector), in principle
all of the above features are included.

3 Experimental setup

In two subsections we briefly detail how the memory-
based learner works, and how we optimized its param-
eters through an automatic process called iterative deep-
ening.

3.1 Memory-based learning

Memory-based learning is a supervised inductive learn-
ing algorithm for learning classification tasks. Memory-
based learning treats a set of training instances as points
in a multi-dimensional feature space, and stores them as
such in aninstance basein memory (rather than perform-
ing some abstraction over them).

New (test) instances are classified by matching them
to all instances in memory, and by calculating with each
match thedistance, given by a distance function between
the new instanceX and each of then memory instances
Y1...n. Classification in memory-based learning is per-
formed by thek-NN algorithm that searches for thek
‘nearest neighbours’ among the memory instances ac-
cording to the distance function. The majority class of
thek nearest neighbours then determines the class of the
new instanceX. Cf. (Daelemans et al., 2002) for algo-
rithmic details and background.



3.2 Iterative deepening

Iterative deepening (ID) is a heuristic search algorithm
for the optimization of algorithmic parameter and fea-
ture selection, that combines classifier wrapping (using
the training material internally to test experimental vari-
ants) (Kohavi and John, 1997) with progressive sampling
of training material (Provost et al., 1999). We start with
a large pool of experiments, each with a unique combina-
tion of input features and algorithmic parameter settings.
In the first step, each attempted setting is applied to a
small amount of training material and tested on a fixed
amount of held-out data (a held-out part of the training
set). Only the best settings are kept; all others are re-
moved from the pool of competing settings. In subse-
quent iterations, this step is repeated, cutting the num-
ber of settings in the pool by a half and retaining the
best-performing half, while at the same time doubling the
amount of training material.

We selected 10% of the training set as held-out data.
Six iterations were performed with increasing training
set sizes, starting with 2000 instances, and doubling with
each iteration up to 128,000 training instances, resulting
in 16 best settings after the last iteration. Selection of
the best experiments was based on their overall F-rate as
computed by theconlleval script.

The initial pool of experiments was created by system-
atically varying parameters of the memory-based learner
and some limited feature selections, (for details, cf.
(Daelemans et al., 2002)):

• Basic distance function: Overlap or modified value
difference metric (MVDM)

• Feature weighting: gain ratio, information gain,χ2,
or shared variance

• k in thek-NN classifier: 5, 9, 13, 15, 17, 19, 21, 25,
and 29

• Distance weighting: none, linear-inverse, inverse,
exponential decay withα=1 andα=4

• Feature selection: apart from the wordform and its
provided CoNLL-2003 PoS tag, create a local win-
dow of either no, 1, or 2 wordforms to the left and
right of the focus word. For all words in a window,
all features are selected.

The first round of the ID process therefore tests2 ×
4 × 9 × 5 × 3 = 1080 systematic permutations of these
parameter settings and feature selection.

4 Extensions

4.1 Seed list features

The first extension is to incorporate language-specific
seed-list (gazetteer) information. Rather than using these
lists external to the classifier, we encode them as internal

features associated to wordforms. For each of the four
named entity classes we gathered one list of names, con-
taining material garnered from name sites on the inter-
net, from the training set (for the MISC category), and
from the CELEX English lexical data base (Baayen et
al., 1993). These lists vary in size from 1269 names to
78,732 names. Each wordform in the training and test
data is then enriched with four binary features, each rep-
resenting whether the word occurs in the respective seed
list. One problem with seed lists is that a word can occur
in more than one seed list, so that more than one of these
four bits may be active.

4.2 Second-stage stacking

The second extension is to use second-stage stacking.
Stacking in general (Wolpert, 1992) encompasses a class
of meta-learning systems that learn to correct errors made
by lower-level classifiers. We adopt the particular method
pioneered in (Veenstra, 1998) in which classifications of a
first memory-based classifier are added as windowed fea-
tures to the instances presented to the second classifier.
Since the second-stage classifier also computes the sim-
ilarities between instances using these extra features, it
is able, in principle, to recognise and correct reoccurring
patterns of errors within sub-sentential sequences. This
could correct errors made due to the “blindness” of the
first-stage classifier, which is unaware of its own classifi-
cations left or right of the wordform in the current focus
position. We used stacking on top of the first extension.

4.3 Unannotated data

For both languages a large unannotated dataset was
made available for extracting data or information. Al-
ternative to using this data to expand or bootstrap seed
lists (Cucerzan and Yarowsky, 1999; Buchholz and
Van den Bosch, 2000), we use the unannotated corpus
to select useful instances to be added directly to the train-
ing set. Not unlike (Yarowsky, 1995) we use confidence
of our classifier on unannotated data to enrich itself; that
is, by adding confidently-classified instances to the mem-
ory. We make the simple assumption that entropy in the
class distribution in the nearest neighbour set computed
in the classification of a new instance is correlated with
the reliability of the classification, whenk > 1. Whenk
nearest neighbours all vote for the same class, the entropy
of that class vote is0.0. Alternatively, when the votes tie,
the entropy is maximal.

A secondary heuristic assumption is that it is proba-
bly not useful to add (almost) exact matches to the mem-
ory, since adding those is likely to have little effect on
the performance of thek-NN classifier. More effect can
be expected from adding instances to memory that have a
low-entropy class distribution in their nearest neighbour
setandof which the nearest neighbours are at a relatively



Precision Recall Fβ=1

English devel. 84.54% 87.16% 85.83
English test 77.01% 80.74% 78.83
German devel. 64.01% 52.29% 57.56
German test 66.71% 56.47% 61.16

Table 1: Overall results (precision, recall, F-rate) of the
initial system on the test sets of both languages.

settings mvdm feat. weight k dist. w
Eng, initial yes gain ratio 21 IL 1
Eng, seedlist yes gain ratio 5 ID 1
Ger, initial yes gain ratio 21 IL 2
Ger, seedlist yes gain ratio 9 ID 2

Table 2: Optimal parameter settings estimated by itera-
tive deepening. “w” stands for window.

large distance. A large distance entails that the instances
contains previously unseen feature values (words), and
assuming that the predicted class label is correct, these
new values can be valuable in matching and therefore
classifying new test material better.

We applied our selection method to the first 2 million
words of the unannotated English dataset. For German
we were able to process 0.25 million words. First we
applied the classifier with two extensions, seed list infor-
mation and second stage stacking, to classify the unan-
notated data. We selected instances with an entropy in
the class distribution lower than 0.05 and a distance of
the nearest neighbour of at least 0.1. For English, in total
179,391 instances (9%) were selected from the unanno-
tated dataset and added to the training set. For German.
markedly less instances were selected: 467 (0.19%).

5 Results

5.1 Initial classifier: Iterative deepening

Iterative deepening produced estimations of optimal pa-
rameter settings for our initial systems for the two lan-
guages, displayed in the first and third row of Table 2.
With this setting we achieved an overall F-rate of 78.83
for English and 61.16 for German. Table 1 lists the full
evaluation results.

5.2 First and second extension: seed list features
and stacking

We have also performed iterative deepening in the exper-
iment with the seed list information. This altered the best
setting found by the iterative deepening process (the sec-
ond and fourth rows of Table 2). The results on the En-
glish development set are slightly better than the initial
system, as can be seen in Table 3. The classifier with

Precision Recall Fβ=1

English devel. 85.04% 87.26% 86.14
English test 75.03% 79.75% 77.32
German devel. 65.27% 50.76% 57.11
German test 69.31% 55.70% 61.77

Table 3: Overall results (precision, recall, F-rate) of the
system with seed-list features on the test sets of both lan-
guages.

Precision Recall Fβ=1

English devel. 85.98% 87.63% 86.80
English test 76.26% 80.21% 78.18
German devel. 68.80% 52.29% 59.42
German test 71.19% 56.38% 62.93

Table 4: Overall results (precision, recall, F-rate) of the
system with seed-list features and second-stage stacking
on the test sets of both languages.

seed list information performs worse on the English test
set than the one without seed lists. The reverse effect is
seen on the German data. On the development set, using
the seed list information gave a slight lower performance,
but on the test set it has a slightly positive effect.

Our second extension, stacking, improves on all over-
all F-scores of both languages as compared to the seed-
list extended systems, as shown in Table 4.

5.3 Third extension: Selecting instances from
unannotated data

The three extensions, using seed list information, per-
forming second stage stacking and adding information
from unannotated data, are combined in the final experi-
ment. This experiment achieves the highest result on the
English development set, and on both German test sets,
as listed in Table 5. The positive effect of adding selected
unannotated data on the German test sets is rather mini-
mal, but we added only a very small amount of unlabeled
material. The performance on the English test set is not
better than the initial classifier.

6 Discussion

In this paper we have presented a memory-based named-
entity recognition system that chunks and labels named
entities in one shot. We reported on three extensions; in-
corporating seed list information, second-stage stacking
and adding selected instances from classified unannotated
data to the training material.

First, we trained and tested a basic classifier without
any of the extensions. Subsequently, we found that (i) in-
corporating seed list information as binary features does
not always help; only in two of the four test sets the



seedlists had a positive effect. There can be several ex-
planations for this, such as the quality of the seed lists,
the chosen parameter setting from the iterative deepening
process or overestimated weights given to the features by
the classifier. Due to the tight time schedule we could not
further investigate this.

Second, second-stage stacking improves generalisa-
tion performance consistently on all test sets as compared
to the seed-list extended systems.

Third, only in the final experiment we added selected
classified instances from unannotated data. This gave an
additional reasonable boost in performance on the En-
glish development set, it attains an overall F-rate of 86.97
(an error reduction of 8%) over the initial classifier. The
same effect was seen on both German test sets, on which
the combination of the three extensions achieved a Fscore
of 59.58 ( 5% error reduction ) and 63.02 ( 5% error re-
duction). This effect is not seen on the English test set;
here the initial classifier performs best. This can partly
be explained by the fact that the last two extensions were
built upon the first extension, which had a markedly lower
score than the initial classifier to begin with.

In sum, our results suggest that two of the three ex-
tensions, the stacking method, and the unlabeled instance
selection method, have been consistently helpful. Seed
list features, however, have not.
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