
Word Sense Discrimination by Clustering Contexts
in Vector and Similarity Spaces

Amruta Purandare and Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812 USA

{pura0010,tpederse}@d.umn.edu
http://senseclusters.sourceforge.net

Abstract

This paper systematically compares unsuper-
vised word sense discrimination techniques
that cluster instances of a target word that oc-
cur in raw text using both vector and similarity
spaces. The context of each instance is repre-
sented as a vector in a high dimensional fea-
ture space. Discrimination is achieved by clus-
tering these context vectors directly in vector
space and also by finding pairwise similarities
among the vectors and then clustering in sim-
ilarity space. We employ two different repre-
sentations of the context in which a target word
occurs. First order context vectors represent
the context of each instance of a target word
as a vector of features that occur in that con-
text. Second order context vectors are an indi-
rect representation of the context based on the
average of vectors that represent the words that
occur in the context. We evaluate the discrim-
inated clusters by carrying out experiments us-
ing sense–tagged instances of 24 SENSEVAL-
2 words and the well known Line, Hard and
Serve sense–tagged corpora.

1 Introduction

Most words in natural language have multiple possible
meanings that can only be determined by considering
the context in which they occur. Given a target word
used in a number of different contexts, word sense dis-
crimination is the process of grouping these instances of
the target word together by determining which contexts
are the most similar to each other. This is motivated by
(Miller and Charles, 1991), who hypothesize that words
with similar meanings are often used in similar contexts.
Hence, word sense discrimination reduces to the problem
of finding classes of similar contexts such that each class

represents a single word sense. Put another way, contexts
that are grouped together in the same class represent a
particular word sense.

While there has been some previous work in sense dis-
crimination (e.g., (Schütze, 1992), (Pedersen and Bruce,
1997), (Pedersen and Bruce, 1998), (Schütze, 1998),
(Fukumoto and Suzuki, 1999)), by comparison it is much
less than that devoted to word sense disambiguation,
which is the process of assigning a meaning to a word
from a predefined set of possibilities. However, solutions
to disambiguation usually require the availability of an
external knowledge source or manually created sense–
tagged training data. As such these are knowledge inten-
sive methods that are difficult to adapt to new domains.

By contrast, word sense discrimination is an unsuper-
vised clustering problem. This is an attractive methodol-
ogy because it is a knowledge lean approach based on ev-
idence found in simple raw text. Manually sense tagged
text is not required, nor are specific knowledge rich re-
sources like dictionaries or ontologies. Instances are clus-
tered based on their mutual contextual similarities which
can be completely computed from the text itself.

This paper presents a systematic comparison of dis-
crimination techniques suggested by Pedersen and Bruce
((Pedersen and Bruce, 1997), (Pedersen and Bruce,
1998)) and by Schütze ((Schütze, 1992), (Schütze,
1998)). This paper also proposes and evaluates several
extensions to these techniques.

We begin with a summary of previous work, and then
a discussion of features and two types of context vec-
tors. We summarize techniques for clustering in vector
versus similarity spaces, and then present our experimen-
tal methodology, including a discussion of the data used
in our experiments. Then we describe our approach to
the evaluation of unsupervised word sense discrimina-
tion. Finally we present an analysis of our experimental
results, and conclude with directions for future work.



2 Previous Work

(Pedersen and Bruce, 1997) and (Pedersen and Bruce,
1998) propose a (dis)similarity based discrimination ap-
proach that computes (dis)similarity among each pair of
instances of the target word. This information is recorded
in a (dis)similarity matrix whose rows/columns repre-
sent the instances of the target word that are to be dis-
criminated. The cell entries of the matrix show the de-
gree to which the pair of instances represented by the
corresponding row and column are (dis)similar. The
(dis)similarity is computed from the first order context
vectors of the instances which show each instance as a
vector of features that directly occur near the target word
in that instance.

(Schütze, 1998) introduces second order context vec-
tors that represent an instance by averaging the feature
vectors of the content words that occur in the context of
the target word in that instance. These second order con-
text vectors then become the input to the clustering algo-
rithm which clusters the given contexts in vector space,
instead of building the similarity matrix structure.

There are some significant differences in the ap-
proaches suggested by Pedersen and Bruce and by
Schütze. As yet there has not been any systematic study
to determine which set of techniques results in better
sense discrimination. In the sections that follow, we high-
light some of the differences between these approaches.

2.1 Context Representation

Pedersen and Bruce represent the context of each test in-
stance as a vector of features that directly occur near the
target word in that instance. We refer to this representa-
tion as the first order context vector. Schütze, by contrast,
uses the second order context representation that averages
the first order context vectors of individual features that
occur near the target word in the instance. Thus, Schütze
represents each feature as a vector of words that occur
in its context and then computes the context of the target
word by adding the feature vectors of significant content
words that occur near the target word in that context.

2.2 Features

Pedersen and Bruce use a small number of local features
that include co–occurrence and part of speech informa-
tion near the target word. They select features from the
same test data that is being discriminated, which is a com-
mon practice in clustering in general. Schütze represents
contexts in a high dimensional feature space that is cre-
ated using a separate large corpus (referred to as the train-
ing corpus). He selects features based on their frequency
counts or log-likelihood ratios in this corpus.

In this paper, we adopt Schütze’s approach and select
features from a separate corpus of training data, in part
because the number of test instances may be relatively

small and may not be suitable for selecting a good feature
set. In addition, this makes it possible to explore varia-
tions in the training data while maintaining a consistent
test set. Since the training data used in unsupervised clus-
tering does not need to be sense tagged, in future work we
plan to develop methods of collecting very large amounts
of raw corpora from the Web and other online sources
and use it to extract features.

Schütze represents each feature as a vector of words
that co–occur with that feature in the training data. These
feature vectors are in fact the first order context vectors
of the feature words (and not target word). The words
that co–occur with the feature words form the dimensions
of the feature space. Schütze reduces the dimensional-
ity of this feature space using Singular Value Decompo-
sition (SVD), which is also employed by related tech-
niques such as Latent Semantic Indexing (Deerwester et
al., 1990) and Latent Semantic Analysis (Landauer et al.,
1998). SVD has the effect of converting a word level
feature space into a concept level semantic space that
smoothes the fine distinctions between features that rep-
resent similar concepts.

2.3 Clustering Space

Pedersen and Bruce represent instances in a
(dis)similarity space where each instance can be seen as
a point and the distance between any two points is a func-
tion of their mutual (dis)similarities. The (dis)similarity
matrix showing the pair-wise (dis)similarities among
the instances is given as the input to the agglomerative
clustering algorithm. The context group discrimination
method used by Schütze, on the other hand, operates on
the vector representations of instances and thus works
in vector space. Also he employs a hybrid clustering
approach which uses both an agglomerative and the
Estimation Maximization (EM) algorithm.

3 First Order Context Vectors

First order context vectors directly indicate which fea-
tures make up a context. In all of our experiments, the
context of the target word is limited to 20 surrounding
content words on either side. This is true both when we
are selecting features from a set of training data, or when
we are converting test instances into vectors for cluster-
ing. The particular features we are interested in are bi-
grams and co–occurrences.

Co-occurrences are words that occur within five po-
sitions of the target word (i.e., up to three intervening
words are allowed). Bigrams are ordered pairs of words
that co–occur within five positions of each other. Thus,
co–occurrences are unordered word pairs that include the
target word, whereas bigrams are ordered pairs that may
or may not include the target. Both the co–occurrences
and the bigrams must occur in at least two instances in



the training data, and the two words must have a log–
likelihood ratio in excess of 3.841, which has the effect
of removing co–occurrences and bigrams that have more
than 95% chance of being independent of the target word.

After selecting a set of co-occurrences or bigrams from
a corpus of training data, a first order context representa-
tion is created for each test instance. This shows how
many times each feature occurs in the context of the tar-
get word (i.e., within 20 positions from the target word)
in that instance.

4 Second Order Context Vectors

A test instance can be represented by a second order con-
text vector by finding the average of the first order context
vectors that are associated with the words that occur near
the target word. Thus, the second order context represen-
tation relies on the first order context vectors of feature
words. The second order experiments in this paper use
two different types of features, co–occurrences and bi-
grams, defined as they are in the first order experiments.

Each co–occurrence identified in training data is as-
signed a unique index and occupies the corresponding
row/column in a word co–occurrence matrix. This is
constructed from the co–occurrence pairs, and is a sym-
metric adjacency matrix whose cell values show the log-
likelihood ratio for the pair of words representing the
corresponding row and column. Each row of the co–
occurrence matrix can be seen as a first order context vec-
tor of the word represented by that row. The set of words
forming the rows/columns of the co–occurrence matrix
are treated as the feature words.

Bigram features lead to a bigram matrix such that
for each selected bigram WORDi<>WORDj, WORDi
represents a single row, say the ith row, and WORDj
represents a single column, say the jth column, of
the bigram matrix. Then the value of cell (i,j) indi-
cates the log–likelihood ratio of the words in the bigram
WORDi<>WORDj. Each row of the bigram matrix can
be seen as a bigram vector that shows the scores of all
bigrams in which the word represented by that row oc-
curs as the first word. Thus, the words representing the
rows of the bigram matrix make the feature set while the
words representing the columns form the dimensions of
the feature space.

5 Clustering

The objective of clustering is to take a set of instances
represented as either a similarity matrix or context vec-
tors and cluster together instances that are more like each
other than they are to the instances that belong to other
clusters.

Clustering algorithms are classified into three main
categories, hierarchical, partitional, and hybrid methods

that incorporate ideas from both. The algorithm acts as a
search strategy that dictates how to proceed through the
instances. The actual choice of which clusters to split
or merge is decided by a criteria function. This section
describes the clustering algorithms and criteria functions
that have been employed in our experiments.

5.1 Hierarchical

Hierarchical algorithms are either agglomerative or divi-
sive. They both proceed iteratively, and merge or divide
clusters at each step. Agglomerative algorithms start with
each instance in a separate cluster and merge a pair of
clusters at each iteration until there is only a single clus-
ter remaining. Divisive methods start with all instances
in the same cluster and split one cluster into two during
each iteration until all instances are in their own cluster.

The most widely known criteria functions used with hi-
erarchical agglomerative algorithms are single link, com-
plete link, and average link, also known as UPGMA.
(Schütze, 1998) points out that single link clustering
tends to place all instances into a single elongated clus-
ter, whereas (Pedersen and Bruce, 1997) and (Purandare,
2003) show that hierarchical agglomerative clustering
using average link (via McQuitty’s method) fares well.
Thus, we have chosen to use average link/UPGMA as our
criteria function for the agglomerative experiments.

In similarity space, each instance can be viewed as a
node in a weighted graph. The weights on edges joining
two nodes indicate their pairwise similarity as measured
by the cosine between the context vectors that represent
the pair of instances.

When agglomerative clustering starts, each node is in
its own cluster and is considered to be the centroid of that
cluster. At each iteration, average link selects the pair
of clusters whose centroids are most similar and merges
them into a single cluster. For example, suppose the clus-
ters I and J are to be merged into a single cluster IJ . The
weights on all other edges that connect existing nodes to
the new node IJ must now be revised. Suppose that Q is
such a node. The new weight in the graph is computed by
averaging the weight on the edge between nodes I and Q
and that on the edge between J and Q. In other words:

W ′(IJ,Q) =
W (I,Q) + W (J,Q)

2
(1)

In vector space, average link starts by assigning each
vector to a single cluster. The centroid of each cluster is
found by calculating the average of all the context vec-
tors that make up the cluster. At each iteration, average
link selects the pair of clusters whose centroids are clos-
est with respect to their cosines. The selected pair of clus-
ters is merged and a centroid is computed for this newly
created cluster.



5.2 Partitional

Partitional algorithms divide an entire set of instances
into a predetermined number of clusters (K) without go-
ing through a series of pairwise comparisons. As such
these methods are somewhat faster than hierarchical al-
gorithms.

For example, the well known K-means algorithm is
partitional. In vector space, each instance is represented
by a context vector. K-means initially selects K random
vectors to serve as centroids of these initial K clusters. It
then assigns every other vector to one of the K clusters
whose centroid is closest to that vector. After all vectors
are assigned, it recomputes the cluster centroids by av-
eraging all of the vectors assigned to that cluster. This
repeats until convergence, that is until no vector changes
its cluster across iterations and the centroids stabilize.

In similarity space, each instance can be viewed as a
node of a fully connected weighted graph whose edges in-
dicate the similarity between the instances they connect.
K-means will first select K random nodes that represent
the centroids of the initial K clusters. It will then assign
every other node I to one of the K clusters such that the
edge joining I and the centroid of that cluster has maxi-
mum weight among the edges joining I to all centroids.

5.3 Hybrid Methods

It is generally believed that the quality of clustering by
partitional algorithms is inferior to that of the agglom-
erative methods. However, a recent study (Zhao and
Karypis, 2002) has suggested that these conclusions are
based on experiments conducted with smaller data sets,
and that with larger data sets partitional algorithms are
not only faster but lead to better results.

In particular, Zhao and Karypis recommend a hybrid
approach known as Repeated Bisections. This overcomes
the main weakness with partitional approaches, which is
the instability in clustering solutions due to the choice of
the initial random centroids. Repeated Bisections starts
with all instances in a single cluster. At each iteration it
selects one cluster whose bisection optimizes the chosen
criteria function. The cluster is bisected using standard
K-means method with K=2, while the criteria function
maximizes the similarity between each instance and the
centroid of the cluster to which it is assigned. As such this
is a hybrid method that combines a hierarchical divisive
approach with partitioning.

6 Experimental Data

We use 24 of the 73 words in the SENSEVAL-2 sense–
tagged corpus, and the Line, Hard and Serve sense–
tagged corpora. Each of these corpora are made up of
instances that consist of 2 or 3 sentences that include a
single target word that has a manually assigned sense tag.

However, we ignore the sense tags at all times except
during evaluation. At no point do the sense tags enter into
the clustering or feature selection processes. To be clear,
we do not believe that unsupervised word sense discrim-
ination needs to be carried out relative to a pre-existing
set of senses. In fact, one of the great advantages of un-
supervised technique is that it doesn’t need a manually
annotated text. However, here we employ sense–tagged
text in order to evaluate the clusters that we discover.

The SENSEVAL-2 data is already divided into training
and test sets, and those splits were retained for these ex-
periments. The SENSEVAL-2 data is relatively small, in
that each word has approximately 50-200 training and
test instances. The data is particularly challenging for
unsupervised algorithms due to the large number of fine
grained senses, generally 8 to 12 per word. The small
volume of data combined with large number of possible
senses leads to very small set of examples for most of the
senses.

As a result, prior to clustering we filter the training
and test data independently such that any instance that
uses a sense that occurs in less than 10% of the available
instances for a given word is removed. We then elimi-
nate any words that have less than 90 training instances
after filtering. This process leaves us with a set of 24
SENSEVAL-2 words, which includes the 14 nouns, 6 ad-
jectives and 4 verbs that are shown in Table 1.

In creating our evaluation standard, we assume that
each instance will be assigned to at most a single clus-
ter. Therefore if an instance has multiple correct senses
associated with it, we treat the most frequent of these as
the desired tag, and ignore the others as possible correct
answers in the test data.

The Line, Hard and Serve corpora do not have a stan-
dard training–test split, so these were randomly divided
into 60–40 training–test splits. Due to the large number
of training and test instances for these words, we filtered
out instances associated with any sense that occurred in
less than 5% of the training or test instances.

We also randomly selected five pairs of words from
the SENSEVAL-2 data and mixed their instances together
(while retaining the training and test distinction that al-
ready existed in the data). After mixing, the data was
filtered such that any sense that made up less than 10%
in the training or test data of the new mixed sample was
removed; this is why the total number of instances for the
mixed pairs is not the same as the sum of those for the
individual words. These mix-words were created in order
to provide data that included both fine grained and coarse
grained distinctions.

Table 1 shows all words that were used in our exper-
iments along with their parts of speech. Thereafter we
show the number of training (TRN) and test instances
(TST) that remain after filtering, and the number of



senses found in the test data (S). We also show the per-
centage of the majority sense in the test data (MAJ). This
is particularly useful, since this is the accuracy that would
be attained by a baseline clustering algorithm that puts all
test instances into a single cluster.

7 Evaluation Technique

When we cluster test instances, we specify an upper limit
on the number of clusters that can be discovered. In these
experiments that value is 7. This reflects the fact that
we do not know a–priori the number of possible senses a
word will have. This also allows us to verify the hypothe-
sis that a good clustering approach will automatically dis-
cover approximately same number of clusters as senses
for that word, and the extra clusters (7–#actual senses)
will contain very few instances. As can be seen from col-
umn S in Table 1, most of the words have 2 to 4 senses on
an average. Of the 7 clusters created by an algorithm, we
detect the significant clusters by ignoring (throwing out)
clusters that contain less than 2% of the total instances.
The instances in the discarded clusters are counted as un-
clustered instances and are subtracted from the total num-
ber of instances.

Our basic strategy for evaluation is to assign available
sense tags to the discovered clusters such that the assign-
ment leads to a maximally accurate mapping of senses to
clusters. The problem of assigning senses to clusters be-
comes one of reordering the columns of a confusion ma-
trix that shows how senses and clusters align such that the
diagonal sum is maximized. This corresponds to several
well known problems, among them the Assignment Prob-
lem in Operations Research, or determining the maximal
matching of a bipartite graph in Graph Theory.

During evaluation we assign one sense to at most one
cluster, and vice versa. When the number of discovered
clusters is the same as the number of senses, then there
is a one to one mapping between them. When the num-
ber of clusters is greater than the number of actual senses,
then some clusters will be left unassigned. And when the
number of senses is greater than the number of clusters,
some senses will not be assigned to any cluster. The rea-
son for not assigning a single sense to multiple clusters
or multiple senses to one cluster is that, we are assuming
one sense per instance and one sense per cluster.

We measure the precision and recall based on this max-
imally accurate assignment of sense tags to clusters. Pre-
cision is defined as the number of instances that are clus-
tered correctly divided by the number of instances clus-
tered, while recall is the number of instances clustered
correctly over the total number of instances. From that we
compute the F–measure, which is two times the precision
and recall, divided by the sum of precision and recall.

8 Experimental Results

We present the discrimination results for six configura-
tions of features, context representations and clustering
algorithms. These were run on each of the 27 target
words, and also on the five mixed words. What follows is
a concise description of each configuration.

• PB1 : First order context vectors, using co–
occurrence features, are clustered in similarity space
using the UPGMA technique.

• PB2 : Same as PB1, except that the first order con-
text vectors are clustered in vector space using Re-
peated Bisections.

• PB3: Same as PB1, except the first order con-
text vectors used bigram features instead of co–
occurrences.

All of the PB experiments use first order context repre-
sentations that correspond to the approach suggested by
Pedersen and Bruce.

• SC1: Second order context vectors of instances were
clustered in vector space using the Repeated Bisec-
tions technique. The context vectors were created
from the word co–occurrence matrix whose dimen-
sions were reduced using SVD.

• SC2: Same as SC1 except that the second order con-
text vectors are converted to a similarity matrix and
clustered using the UPGMA method.

• SC3: Same as SC1, except the second order context
vectors were created from the bigram matrix.

All of the SC experiments use second order context
vectors and hence follow the approach suggested by
Schütze.

Experiment PB2 clusters the Pedersen and Bruce style
(first order) context vectors using the Schütze like cluster-
ing scheme, while SC2 tries to see the effect of using the
Pedersen and Bruce style clustering method on Schütze
style (second order) context vectors. The motivation be-
hind experiments PB3 and SC3 is to try bigram features
in both PB and SC style context vectors.

The F–measure associated with the discrimination of
each word is shown in Table 1. Any score that is sig-
nificantly greater than the majority sense (according to a
paired t–test) is shown in bold face.

9 Analysis and Discussion

We employ three different types of data in our experi-
ments. The SENSEVAL-2 words have a relatively small
number of training and test instances (around 50-200).
However, the Line, Hard and Serve data is much larger,



word.pos TRN TST S PB1 SC1 PB2 SC2 PB3 SC3 MAJ
art.n 159 83 4 37.97 45.52 45.46 46.15 43.03 55.34 46.32
authority.n 168 90 4 38.15 51.25 43.93 53.01 41.86 34.94 37.76
bar.n 220 119 5 34.63 37.23 50.66 40.87 41.05 58.26 45.93
channel.n 135 67 6 40.63 37.21 40.31 41.54 36.51 39.06 31.88
child.n 116 62 2 45.04 46.85 51.32 50.00 55.17 53.45 56.45
church.n 123 60 2 57.14 49.09 48.21 55.36 52.73 46.43 59.02
circuit.n 129 75 8 25.17 34.72 32.17 33.33 27.97 25.35 30.26
day.n 239 128 3 60.48 46.15 55.65 45.76 62.65 55.65 62.94
facility.n 110 56 3 40.00 58.00 38.09 58.00 38.46 64.76 48.28
feeling.n 98 45 2 58.23 51.22 52.50 56.10 46.34 53.66 61.70
grip.n 94 49 5 45.66 43.01 58.06 53.76 49.46 49.46 46.67
material.n 111 65 5 32.79 40.98 41.32 47.54 32.79 47.54 42.25
mouth.n 106 55 4 54.90 47.53 60.78 43.14 43.14 47.06 46.97
post.n 135 72 5 32.36 37.96 48.17 30.88 30.88 32.36 32.05
blind.a 97 53 3 53.06 61.18 63.64 58.43 76.29 79.17 82.46
cool.a 102 51 5 35.42 39.58 38.71 34.78 33.68 38.71 42.86
fine.a 93 59 5 47.27 47.71 47.71 33.93 38.18 47.71 41.10
free.a 105 64 3 48.74 49.54 52.54 55.46 45.00 52.99 49.23
natural.a 142 75 4 34.72 35.21 33.56 30.99 32.40 38.03 35.80
simple.a 126 64 4 38.33 50.00 47.06 38.33 38.33 47.06 50.75
begin.v 507 255 3 59.36 40.46 40.40 43.66 70.12 42.55 64.31
leave.v 118 54 5 43.14 38.78 27.73 40.00 46.00 53.47 38.18
live.v 112 59 4 37.83 40.00 48.21 45.45 36.37 41.82 57.63
train.v 116 56 5 28.57 33.96 28.57 34.28 26.67 32.08 33.93

line.n 1615 1197 3 72.67 26.77 62.00 55.47 68.40 37.97 72.10
hard.a 2365 1592 2 86.75 67.42 41.18 73.22 87.06 63.41 87.44
serve.v 2365 1752 4 40.50 33.20 36.82 34.37 45.66 31.46 40.53

cool.a-train.v 197 102 8 22.34 39.00 25.25 40.61 22.57 41.00 22.86
fine.a-cool.a 185 104 7 27.86 42.36 33.83 47.72 35.00 42.05 24.79
fine.a-grip.n 177 99 7 36.84 49.48 33.50 45.02 31.41 49.48 24.19
leave.v-post.n 204 113 8 29.36 48.18 32.11 41.44 23.85 41.82 21.01
post.n-grip.n 208 117 8 28.44 43.67 28.44 41.05 26.55 34.21 20.90

Table 1: F-measures

where each contains around 4200 training and test in-
stances combined. Mixed word are unique because they
combined the instances of multiple target words and
thereby have a larger number of senses to discriminate.
Each type of data brings with it unique characteristics,
and sheds light on different aspects of our experiments.

9.1 Senseval-2 data

Table 2 compares PB1 against PB3, and SC1 against
SC3, when these methods are used to discriminate the 24
SENSEVAL-2 words. Our objective is to study the effect
of using bigram features against co–occurrences in first
(PB) and second (SC) order context vectors while using
relatively small amounts of training data per word. Note
that PB1 and SC1 use co–occurrence features, while PB3
and SC3 rely on bigram features.

This table shows the number of nouns (N), adjec-
tives (A) and verbs (V) where bigrams were more effec-
tive than co-occurrences (bigram>co-occur), less effec-
tive (bigram<co-occur), and had no effect (bigram=co-
occur).

Table 2 shows that there is no clear advantage to us-
ing either bigrams or co–occurrence features in first or-
der context vectors (PB). However, bigram features show
clear improvement in the results of second order context
vectors (SC).

Our hypothesis is that first order context vectors (PB)
represent a small set of bigram features since they are
selected from the relatively small SENSEVAL-2 words.
These features are very sparse, and as such most instances
do not share many common features with other instances,
making first order clustering difficult.



N A V
7 1 2 bigram>co-occur

PB 6 4 2 bigram<co-occur
1 1 0 bigram=co-occur
9 3 3 bigram>co-occur

SC 4 1 1 bigram<co-occur
1 2 0 bigram=co-occur

Table 2: Bigrams vs. Co-occurrences

N A V
PB 9 4 1 rbr>upgma

4 0 2 rbr<upgma
1 2 1 rbr=upgma

SC 8 1 3 rbr>upgma
2 5 0 rbr<upgma
4 0 1 rbr=upgma

Table 3: Repeated Bisections vs. UPGMA

However, second order context vectors indirectly rep-
resent bigram features, and do not require an exact match
between vectors in order to establish similarity. Thus,
the poor performance of bigrams in the case of first or-
der context vectors suggests that when dealing with small
amounts of data, we need to boost or enrich our bigram
feature set by using some other larger training source like
a corpus drawn from the Web.

Table 3 shows the results of using the Repeated Bi-
sections algorithm in vector space (PB) against that of
using UPGMA method in similarity space. This ta-
ble shows the number of Nouns, Adjectives and Verbs
SENSEVAL-2 words that performed better (rbr>upgma),
worse (rbr<upgma), and equal (rbr=upgma) when using
Repeated Bisections clustering versus the UPGMA tech-
nique, on first (PB) and second (SC) order vectors.

In short, Table 3 compares PB1 against PB2 and SC1
against SC2. From this, we observe that with both first
order and second order context vectors Repeated Bisec-
tions is more effective than UPGMA. This suggests that it
is better suited to deal with very small amounts of sparse
data.

Table 4 summarizes the overall performance of each of
these experiments compared with the majority class. This
table shows the number of words for which an experi-
ment performed better than the the majority class, broken
down by part of speech. Note that SC3 and SC1 are most
often better than the majority class, followed closely by
PB2 and SC2. This suggests that the second order con-
text vectors (SC) have an advantage over the first order
vectors for small training data as is found among the 24
SENSEVAL-2 words.

We believe that second order methods work better on

N A V TOTAL
SC3 > MAJ 8 3 1 12
SC1 > MAJ 6 2 2 10
PB2 > MAJ 7 2 0 9
SC2 > MAJ 6 1 2 9
PB1 > MAJ 4 1 1 6
PB3 > MAJ 3 0 2 5

Table 4: All vs. Majority Class

smaller amounts of data, in that the feature spaces are
quite small, and are not able to support the degree of ex-
act matching of features between instances that first order
vectors require. Second order context vectors succeed in
such cases because they find indirect second order co–
occurrences of feature words and hence describe the con-
text more extensively than the first order representations.

With smaller quantities of data, there is less possibil-
ity of finding instances that use exactly the same set of
words. Semantically related instances use words that are
conceptually the same but perhaps not lexically. Sec-
ond order context vectors are designed to identify such
relationships, in that exact matching is not required, but
rather words that occur in similar contexts will have sim-
ilar vectors.

9.2 Line, Hard and Serve data

The comparatively good performance of PB1 and PB3 in
the case of the Line, Hard and Serve data (see Table 1)
suggests that first order context vectors when clustered
with UPGMA perform relatively well on larger samples
of data.

Moreover, among the SC experiments on this data, the
performance of SC2 is relatively high. This further sug-
gests that UPGMA performs much better than Repeated
Bisections with larger amounts of training data.

These observations correspond with the hypothesis
drawn from the SENSEVAL-2 results. That is, a large
amount of training data will lead to a larger feature space
and hence there is a greater chance of matching more fea-
tures directly in the context of the test instances. Hence,
the first order context vectors that rely on the immedi-
ate context of the target word succeed as the contexts are
more likely to use similar sets of words that in turn are
selected from a large feature collection.

9.3 Mix-Word Results

Nearly all of the experiments carried out with the 6 dif-
ferent methods perform better than the majority sense in
the case of the mix-words. This is partially due to the fact
that these words have a large number of senses, and there-
fore have low majority classifiers. In addition, recall that
this data is created by mixing instances of distinct target



words, which leads to a subset of coarse grained (distinct)
senses within the data that are easier to discover than the
senses of a single word.

Table 1 shows that the top 3 experiments for each of
the mixed-words are all second order vectors (SC). We
believe that this is due to the sparsity of the feature spaces
of this data. Since there are so many different senses, the
number of first order features that would be required to
correctly discriminate them is very high, leading to better
results for second order vectors.

10 Future Directions

We plan to conduct experiments that compare the ef-
fect of using very large amounts of training data versus
smaller amounts where each instance includes the tar-
get word (as is the case in this paper). We will draw
our large corpora from a variety of sources, including
the British National Corpus, the English GigaWord Cor-
pus, and the Web. Our motivation is that the larger cor-
pora will provide more generic co–occurrence informa-
tion about words without regard to a particular target
word. However, the data specific to a given target word
will capture the word usages in the immediate context of
the target word. Thus, we will test the hypothesis that
a smaller sample of data where each instance includes
the target word is more effective for sense discrimination
than a more general corpus of training data.

We are also planning to automatically attach descrip-
tive labels to the discovered clusters that capture the un-
derlying word sense. These labels will be created from
the most characteristic features used by the instances be-
longing to the same cluster. By comparing such descrip-
tive features of each cluster with the words that occur in
actual dictionary definitions of the target word, we plan
to carry out fully automated word sense disambiguation
that does not rely on any manually annotated text.

11 Conclusions

We present an extensive comparative analysis of word
sense discrimination techniques using first order and sec-
ond order context vectors, where both can be employed in
similarity and vector space. We conclude that for larger
amounts of homogeneous data such as the Line, Hard and
Serve data, the first order context vector representation
and the UPGMA clustering algorithm are the most effec-
tive at word sense discrimination. We believe this is the
case because in a large sample of data, it is very likely that
the features that occur in the training data will also occur
in the test data, making it possible to represent test in-
stances with fairly rich feature sets. When given smaller
amounts of data like SENSEVAL-2, second order context
vectors and a hybrid clustering method like Repeated Bi-
sections perform better. This occurs because in small and

sparse data, direct first order features are seldom observed
in both the training and the test data. However, the in-
direct second order co–occurrence relationships that are
captured by these methods provide sufficient information
for discrimination to proceed.

12 Acknowledgments

This research is supported by a National Science Foun-
dation Faculty Early CAREER Development Award
(#0092784).

All of the experiments in this paper were carried out
with version 0.47 of the SenseClusters package, freely
available from the URL shown on the title page.

References
S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer,

and R. Harshman. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Informa-
tion Science, 41:391–407.

F. Fukumoto and Y. Suzuki. 1999. Word sense disam-
biguation in untagged text based on term weight learn-
ing. In Proceedings of the Ninth Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 209–216, Bergen.

T.K. Landauer, P.W. Foltz, and D. Laham. 1998. An in-
troduction to latent semantic analysis. Discourse Pro-
cesses, 25:259–284.

G.A. Miller and W.G. Charles. 1991. Contextual corre-
lates of semantic similarity. Language and Cognitive
Processes, 6(1):1–28.

T. Pedersen and R. Bruce. 1997. Distinguishing word
senses in untagged text. In Proceedings of the Sec-
ond Conference on Empirical Methods in Natural Lan-
guage Processing, pages 197–207, Providence, RI,
August.

T. Pedersen and R. Bruce. 1998. Knowledge lean word
sense disambiguation. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages
800–805, Madison, WI, July.

A. Purandare. 2003. Discriminating among word senses
using McQuitty’s similarity analysis. In Proceedings
of the HLT-NAACL 2003 Student Research Workshop,
pages 19–24, Edmonton, Alberta, Canada, May.

H. Schütze. 1992. Dimensions of meaning. In Pro-
ceedings of Supercomputing ’92, pages 787–796, Min-
neapolis, MN.

H. Schütze. 1998. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123.

Y. Zhao and G. Karypis. 2002. Evaluation of hierar-
chical clustering algorithms for document datasets. In
Proceedings of the 11th Conference of Information and
Knowledge Management (CIKM), pages 515–524.


