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Abstract

This paper presents our work on Semantic Role
Labeling using a Transformation-Based Error-
Driven approach in the style of Eric Brill (Brill,
1995). Our approach achieved an overallF1

score of43.48 on non-verb annotations. We
believe our approach is noteworthy because of
its novelty in this area and because it produces
short lists of human-understandable transfor-
mation rules as its output.

1 Introduction to Transformation-Based
Error-Driven Learning

For the 2004 Conference on Computational Natural Lan-
guage Learning (CoNLL), our team has applied the
methodology popularized by Eric Brill for part-of-speech
tagging and linguistic parsing (Brill, 1995; Brill, 1993).
In this methodology, illustrated in Figure 1, a system
learns a sequence of rules that best labels training data.
These rules are then used to annotate previously unseen
data.

According to (Brill, 1995), a Transformation-Based
Error-Driven learning application is defined by:

1. The initial annotation scheme

2. The space of allowable transformations

3. The iterative algorithm for choosing a transforma-
tion sequence

The initial annotation may be extremely simple. For
example, in a part-of-speech tagging task, the initial an-
notation may assign each token its most likely tag without
any regard to context (Brill, 1995).

The iterative learning algorithm typically consists of
simply searching for a rule that maximizes the increase
in some objective function using a greedy hill-climbing
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Figure 1: Overview of general Transformation-Based
Error-Driven learning

strategy. For the CoNLL shared task, since participants
are evaluated by theirF1 scores, it is reasonable to use
the F1 score as an objective function. We also imple-
mented some extensions to the hill-climbing strategy that
we describe in Section 2.3.

2 Experimental Setting

In our approach, we used three successive learning
stages–the first stage tags the verb regionV, the second
tags theA0 andA1 arguments, and the third tags all re-
maining arguments. The output of each stage becomes
the initial annotation for the following stage. Therefore,
our system only defines an explicit initial annotation for
the verb-tagging phase: for each proposition, we initially
tag only the single token containing the verb asV.

The search for new transformation templates is ter-
minated when no new transformation can be found that
would improve the objective function by at least0.03%.



2.1 Transformation templates

For the first stage, transformations are generated from the
following eight transformation templates:

Lengthen [shorten] the end of region1 V by one token if:

a,b) followed by chunk with tag=X

c,d) followed by token with POS2=X

e,f) followed by chunk with tag=X and token with
POS=Y

g,h) the verb token’s lemma isX

In this formulation, “chunk” refers to the IOB2 chunks,
and “clause” refers to the nested clause structure (S re-
gions) given as task input. “Lemma” refers to the in-
finitive form of the verb, identified in the task input and
coreferenced in the PropBank data.X andY are vari-
ables that range over all types of chunks, POS tags, or
lemmas. The rule-learning system must determine which
values for these variables will produce the most effec-
tive transformations. For example, a rule that the system
might produce from template ‘e’ is:

Lengthen the end of regionV by one token if
the region is followed by chunk with tag=PRT
and token with POS=RP.

Based on the observation that allV regions in the train-
ing data were either one or two tokens in length, an ad-
ditional constraint was added to the first stage, requiring
that lengthening-rules only apply to regions of length one,
and shortening-rules only apply to regions of length two.

The second and third stages use a common set of
eleven transformation templates, but in the second stage
the learner is restricted to adding or altering onlyA0 and
A1 regions. The transformation templates are as follows:

A,B) If chunk with tag=X is followed [preceded] directly
by region with tag=Y , mark chunk asZ.

C,D) If token with POS=X is followed [preceded] di-
rectly by region with tag=Y , mark token asZ.

E,F) If chunk with tag=X is followed [preceded] (per-
haps indirectly) by region with tag=Y , mark chunk
asZ.

G,H) If region with tag=X is followed [preceded] by
chunk with tag=PP, which is in turn followed [pre-
ceded] by chunk with tag=Y , extendX forward
[backward] throughY .

1In this paper, we use the term “region” to refer to a section
of corpus text that has been labeled in the output as a verb or
as a verb argument. We also use the term in rule definitions to
refer to the type of label assigned to that section of text.
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I,J) If verb’s first token has POS=X [and is preceded by
POS=Y ], switchA0 andA1.

K) If region with tag=X is contained in a clause-
starting verb phrase, and this is preceded by a
clause-starting token with POS=Y , mark tokenY as
Z.

Templates “A-H” are meant to capture structural rela-
tionships among arguments, such as the fact thatA1 re-
gions usually followV regions, or that arguments may
consist of severalNP chunks joined byPPchunks. Tem-
plates “I” and “J” were written to discover passive verb
relationships. Template “K” was an explicit (admittedly
ad hoc) attempt to recognizeR-A0 andR-A1 arguments.

To avoid creating tagged regions that overlap, we use
a first-tag-wins strategy: if a transformation would tag a
new region that overlaps an existing tagged region, the
new region is trimmed until any overlaps vanish.

Notice that unlike the templates in the first stage, these
templates make no reference to lexical information. In
particular, no rule takes advantage of PropBank data in its
tagging process3. We anticipate that using PropBank data
would potentially improve performance, but we have not
yet experimented with it. Also, without any lexical infor-
mation in these templates, we are capturing only general
patterns of argument structure within the training corpus,
not the statistical patterns of particular verb frames. In
future experiments we expect to incorporate lexical data
into transformation rules.

2.2 Arguments and clause structure

In order to gain some traction on the problem, we an-
alyzed the relationship between semantic arguments and
clause boundaries. To investigate this, we labeled each ar-
gument with the smallest clause containing it as a proper
subset. We then tallied the number of each type of ar-
gument labeled with the same clause as its verb, and the
number labeled with a different clause. The results are
shown in Table 1.

Note that for almost all argument types, the over-
whelming majority of arguments are found in the same
clause as the verb. This motivated us to add an additional
constraint to the transformation templates A-J: only cre-
ate arguments in the same clause as the verb. This sim-
plification necessarily will miss any legitimate arguments
outside the clause (most notably 20% ofA0 arguments).

2.3 Reordering of learned rules

In observing the sequence of transformations learned by
the system, it became apparent that the system’s strict

3We actually do use PropBank in a limited way: no trans-
formation will assign an argumentA0-A5 to a verb unless that
argument is listed for one of the verb’s senses in PropBank.



Same Different Percent
Tag clause clause same
A1 16896 1150 93.6%
A0 10134 2575 79.7%
A2 4022 201 95.2%

AM-TMP 3329 238 93.3%
AM-MOD 1752 1 99.9%
AM-ADV 1675 52 97.0%
AM-MNR 1277 60 95.5%
AM-LOC 1184 95 92.6%
AM-DIS 1042 35 96.8%

A3 758 26 96.7%
AM-NEG 687 0 100.0%

A4 625 1 99.8%
AM-PNC 432 14 96.9%

C-A1 313 129 70.8%
AM-CAU 261 22 92.2%
AM-DIR 228 3 98.7%
AM-EXT 150 2 98.7%

R-A0 10 728 1.4%
R-A1 7 353 1.9%

Table 1: Verb-argument clause agreement on training
data (arguments with fewer than 50 examples omitted)

greedy-hill-climbing strategy often learned a non-optimal
ordering of rules. This is because the system has no look-
ahead capability to check whether a sequence of multiple
rules applied in succession might produce a good final
result despite providing little or no initial improvement.

The addition of a look-ahead searcher has been sug-
gested (Brill, 1995), but we have not seen it implemented
in a research context, likely due to the fact that a straight-
forward implementation of the concept would at mini-
mum square the amount of time required for training.

Instead, we implemented alook-behindsearch strat-
egy, which allows rules to be reordered after discovery. It
is meant to address the case in which the system learns
a set of rules that each produce improvements in the tar-
get function, but interact with each other in a non-optimal
way. Whenever our system discovers a new rule, rather
than simply applying it and searching for the next rule,
it is allowed to try all permutations of the lastn discov-
ered rules to see whether performance would improve by
using a different ordering. If so, the rules are re-ordered.

To our knowledge, this strategy has not been employed
in Transformation-Based Error-Driven learning settings.
In our experiments, the strategy discovered transforma-
tion sequences that better annotated the input data with-
out using more rules, and therefore seems to produce a
labeler less likely to overfit the training data. In our test-
ing, the technique seems to have increased the overallF1

score by between0.5% and1.0%—we caution, however,

Precision Recall Fβ=1

Overall 57.73% 34.35% 43.07
A0 60.92% 52.98% 56.67
A1 53.90% 45.18% 49.16
AM-MOD 99.81% 58.59% 73.83
AM-NEG 44.89% 77.29% 56.79
AM-TMP 38.34% 6.36% 10.92
R-A0 64.61% 76.69% 70.14

V 99.19% 99.19% 99.19

Table 2: Annotation agreement on training data (rows
with all-zero entries omitted)

that we have not undertaken a rigorous comparative study
of the technique.

3 Results

The quality of our transformation rules on the training set
is shown in Table 2, and the results on the test set are
shown in Table 3. The rules that generated these results
are shown in Table 4, along with the iterativeF1 scores
on the training set as the rules are learned.

4 Discussion

First, note that only one rule was learned in the verb-
tagging phase:Lengthen regionV if followed by chunk
with tag=PRT. With earlier releases of the data the sys-
tem did learn multiple rules, including lexically-based
rules, but in later releases only this one rule was learned.

Second, observe that the system actually did reorder
rules after discovering them, as evidenced by the non-
monotonic “discovery order” column. To attain this re-
sult, we used a look-behind of 2, i.e. the last 3 rules
learned were candidates for reordering.

Third, several of the rules in the sequence are identical.
In some cases, this seems to be because multiple applica-
tions of a rule were necessary to achieve full results (e.g.
rule “H”, which extended anA0 or A1 region through
joined NP chunks several times). In other cases, this
seems to be one rule re-applying itself after another rule
modified the results of its earlier application (e.g. rule
“E”, which was affected by applications of rule “H”).

Finally, note that only 23 transformations were found.
The last few rules begin dealing with lesser-represented
argument types likeR-A0 andAM-NEG , but many types
remain completely unaddressed by the system. We may
be able to increase performance on those types by adding
additional rule templates, or by decreasing the learning
termination threshold for the system. Rule “K” was cre-
ated as an explicit attempt to recognizeR-A0 and similar
argument types, and seems to have been reasonably suc-
cessful. There may be other relatively simple templates
we can create to recognize other arguments.



Precision Recall Fβ=1

Overall 58.08% 34.75% 43.48
A0 60.26% 52.73% 56.24
A1 54.53% 44.56% 49.05
A2 0.00% 0.00% 0.00
A3 0.00% 0.00% 0.00
A4 0.00% 0.00% 0.00
A5 0.00% 0.00% 0.00
AM-ADV 0.00% 0.00% 0.00
AM-CAU 0.00% 0.00% 0.00
AM-DIR 0.00% 0.00% 0.00
AM-DIS 0.00% 0.00% 0.00
AM-EXT 0.00% 0.00% 0.00
AM-LOC 0.00% 0.00% 0.00
AM-MNR 0.00% 0.00% 0.00
AM-MOD 100.00% 56.68% 72.35
AM-NEG 48.34% 80.31% 60.36
AM-PNC 0.00% 0.00% 0.00
AM-PRD 0.00% 0.00% 0.00
AM-TMP 40.48% 6.83% 11.68
R-A0 66.45% 64.78% 65.61
R-A1 0.00% 0.00% 0.00
R-A2 0.00% 0.00% 0.00
R-A3 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-PNC 0.00% 0.00% 0.00
R-AM-TMP 0.00% 0.00% 0.00

V 98.21% 98.21% 98.21

Table 3: Results on test data

In future work, there are several avenues we would like
to explore. Our first-tag-wins assignment strategy men-
tioned above is not grounded in research into alternate
strategies, and in fact we have not yet tried any others.

We also experimented with isolating common verb
types into their own corpus—for example, if we train sep-
arately on the verb “say,” which represents nearly 10% of
the target verbs in the training set and exhibits different
argument patterns from other verbs, we achieve anF1

value of about 82% on this subset using only five learned
rules. It may be possible to leverage this work by group-
ing other less common verbs by their VerbNet class(es).

5 Conclusion

We have described a Transformation-Based Error-Driven
learning approach to the CoNLL shared task on seman-
tic role labeling. Although we are relative newcomers to
this task and this approach has not to our knowledge been
applied to it before, we believe our results are of general
interest for the following reasons.

First, the learned output of the system is highly

Discovery
Rule Parameters order F1

initial annotation 0.00
a PRT 1 0.00
E NP, V, A0 2 20.20
I VBN 5 24.60

B NP, V, A1 3 31.60
B S, V, A1 4 35.82
H A0, NP 6 36.44
D NN, V, A1 9 36.67
D NNS, V, A1 10 36.86
E NP, V, A1 8 37.36
J VBZ, ” 11 37.46
E S, V, A1 7 38.55
H A1, NP 12 38.64
H A0, NP 13 38.71
H A1, NP 14 38.78
J VBD, ” 15 38.83
E S, V, A1 16 39.07
G A0, NP 17 39.09
H A1, NP 18 39.11
C MD, V, AM-MOD 19 41.23
K V, WDT, R-A0 20 41.78
K V, WP, R-A0 21 42.21
A ADVP, V, AM-TMP 22 42.46
C RB, V, AM-NEG 23 43.16

Table 4: Rules learned for semantic role labeling

scrutable, in the sense that the transformation rules can
easily be reviewed and understood by a human supervi-
sor. This may benefit real-world application of the tech-
nique as rules may be manually reordered, switched on
or off, or modified. It also allows a developer to closely
monitor changes in the system, creating new rules as he
or she identifies areas of the data that are being under-
served by the current set of transformation templates.

Second, as alluded to above, there are several appeal-
ing directions to direct future research, and we believe the
results obtained here can be significantly improved.

Third, we know of no previous work using our look-
behind reordering technique in conjunction with rule-
based learning, and the technique may have broad appli-
cability beyond semantic role labeling.
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