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Abstract

We present a method for recognizing se-
mantic role arguments using a kernel on
weighted marked ordered labeled trees
(the WMOLT kernel). We extend the
kernels on marked ordered labeled trees
(Kazama and Torisawa, 2005) so that the
mark can be weighted according to its im-
portance. We improve the accuracy by
giving more weights on subtrees that con-
tain the predicate and the argument nodes
with this ability. Although Kazama and
Torisawa (2005) presented fast training
with tree kernels, the slow classification
during runtime remained to be solved. In
this paper, we give a solution that uses an
efficient DP updating procedure applica-
ble in argument recognition. We demon-
strate that the WMOLT kernel improves
the accuracy, and our speed-up method
makes the recognition more than 40 times
faster than the naive classification.

1 Introduction

Semantic role labeling (SRL) is a task that recog-
nizes the arguments of a predicate (verb) in a sen-
tence and assigns the correct role to each argument.
As this task is recognized as an important step after
(or the last step of) syntactic analysis, many stud-
ies have been conducted to achieve accurate seman-
tic role labeling (Gildea and Jurafsky, 2002; Mos-
chitti, 2004; Hacioglu et al., 2004; Punyakanok et
al., 2004; Pradhan et al., 2005a; Pradhan et al.,
2005b; Toutanova et al., 2005).

Most of the studies have focused on machine
learning because of the availability of standard
datasets, such as PropBank (Kingsbury and Palmer,
2002). Naturally, the usefulness of parse trees in

this task can be anticipated. For example, the recent
CoNLL 2005 shared task (Carreras and Màrquez,
2005) provided parse trees for use and their useful-
ness was ensured. Most of the methods heuristically
extract features from parse trees, and from other
sources, and use them in machine learning methods
based on feature vector representation. As a result,
these methods depend on feature engineering, which
is time-consuming.

Tree kernels (Collins and Duffy, 2001; Kashima
and Koyanagi, 2002) have been proposed to directly
handle trees in kernel-based methods, such as SVMs
(Vapnik, 1995). Tree kernels calculate the similar-
ity between trees, taking into consideration all of the
subtrees, and, therefore there is no need for such fea-
ture engineering.

Moschitti and Bejan (2004) extensively studied
tree kernels for semantic role labeling. However,
they reported that they could not successfully build
an accurate argument recognizer, although the role
assignment was improved. Although Moschitti et al.
(2005) reported on argument recognition using tree
kernels, it was a preliminary evaluation because they
used oracle parse trees.

Kazama and Torisawa (2005) proposed a new tree
kernel for node relation labeling, as which SRL can
be cast. This kernel is defined on marked ordered la-
beled trees, where a node can have a mark to indicate
the existence of a relation. We refer to this kernel
as the MOLT kernel. Compared to (Moschitti and
Bejan, 2004) where tree fragments are heuristically
extracted before applying tree kernels, the MOLT
kernel is general and desirable since it does not re-
quire such fragment extraction. However, the eval-
uation conducted by Kazama and Torisawa (2005)
was limited to preliminary experiments for role as-
signment. In this study, we first evaluated the per-
formance of the MOLT kernel for argument recogni-
tion, and found that the MOLT kernel cannot achieve
a high accuracy if used in its original form.
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Figure 1: (a)-(c): Argument recognition as node relation recognition. (a’): relation (a) represented as marked
ordered tree.

Therefore, in this paper we propose a modifica-
tion of the MOLT kernel, which greatly improves
the accuracy. The problem with the original MOLT
kernel is that it treats subtrees with one mark, i.e.,
those including only the argument or the predicate
node, and subtrees with two marks, i.e., those in-
cluding both the argument and the predicate nodes
equally, although the latter is likely to be more im-
portant for distinguishing difficult arguments. Thus,
we modified the MOLT kernel so that the marks can
be weighted in order to give large weights to the sub-
trees with many marks. We call the modified kernel
the WMOLT kernel (the kernel on weighted marked
ordered labeled trees). We show that this modifica-
tion greatly improves the accuracy when the weights
for marks are properly tuned.

One of the issues that arises when using tree ker-
nels is time complexity. In general, tree kernels can
be calculated in O(|T1||T2|) time, where |Ti| is the
number of nodes in tree Ti, using dynamic program-
ming (DP) procedures (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002). However, this cost
is not negligible in practice. Kazama and Torisawa
(2005) proposed a method that drastically speeds up
the calculation during training by converting trees
into efficient vectors using a tree mining algorithm.
However, the slow classification during runtime re-
mained an open problem.

We propose a method for speeding up the runtime
classification for argument recognition. In argument
recognition, we determine whether a node is an ar-
gument or not for all the nodes in a tree . This
requires a series of calculations between a support
vector tree and a tree with slightly different mark-
ing. By exploiting this property, we can efficiently
update DP cells to obtain the kernel value with less
computational cost.

In the experiments, we demonstrated that the
WMOLT kernel drastically improved the accuracy

and that our speed-up method enabled more than
40 times faster argument recognition. Despite these
successes, the performance of our current system is
F1 = 78.22 on the CoNLL 2005 evaluation set when
using the Charniak parse trees, which is far worse
than the state-of-the-art system. We will present
possible reasons and future directions.

2 Semantic Role Labeling

Semantic role labeling (SRL) recognizes the argu-
ments of a given predicate and assigns the correct
role to each argument. For example, the sentence “I
saw a cat in the park” will be labeled as follows with
respect to the predicate “see”.

[A0 I] [V saw] [A1 a cat] [AM-LOC in the park]

In the example, A0, A1, and AM-LOC are the roles
assigned to the arguments. In the CoNLL 2005
dataset, there are the numbered arguments (AX)
whose semantics are predicate dependent, the ad-
juncts (AM-X), and the references (R-X) for rel-
ative clauses.

Many previous studies employed two-step SRL
methods, where (1) we first recognize the argu-
ments, and then (2) classify the argument to the cor-
rect role. We also assume this two-step processing
and focus on the argument recognition.

Given a parse tree, argument recognition can be
cast as the classification of tree nodes into two
classes, “ARG” and “NO-ARG”. Then, we consider
the words (a phrase) that are the descendants of an
“ARG” node to be an argument. Since arguments
are defined for a given predicate, this classification
is the recognition of a relation between the predicate
and tree nodes. Thus, we want to build a binary clas-
sifier that returns a +1 for correct relations and a -1
for incorrect relations. For the above example, the
classifier will output a +1 for the relations indicated
by (a), (b), and (c) in Figure 1 and a -1 for the rela-
tions between the predicate node and other nodes.
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Since the task is the classification of trees with
node relations, tree kernels for usual ordered la-
beled trees, such as those proposed by Collins and
Duffy (2001) and Kashima and Koyanagi (2002),
are not useful. Kazama and Torisawa (2005) pro-
posed to represent a node relation in a tree as a
marked ordered labeled tree and presented a kernel
for it (MOLT kernel). We adopted the MOLT kernel
and extend it for accurate argument recognition.

3 Kernels for Argument Recognition

3.1 Kernel-based classification
Kernel-based methods, such as support vector ma-
chines (SVMs) (Vapnik, 1995), consider a mapping
Φ(x) that maps the object x into a, (usually high-
dimensional), feature space and learn a classifier in
this space. A kernel function K(xi, xj) is a function
that calculates the inner product 〈Φ(xi), Φ(xj)〉 in
the feature space without explicitly computing Φ(x),
which is sometimes intractable. Then, any classifier
that is represented by using only the inner products
between the vectors in a feature space can be re-
written using the kernel function. For example, an
SVM classifier has the form:

f(x) =
∑

i

αiK(xi, x) + b,

where αi and b are the parameters learned in the
training. With kernel-based methods, we can con-
struct a powerful classifier in a high-dimensional
feature space. In addition, objects x do not need
to be vectors as long as a kernel function is defined
(e.g., x can be strings, trees, or graphs).

3.2 MOLT kernel
A marked ordered labeled tree (Kazama and Tori-
sawa, 2005) is an ordered labeled tree in which each
node can have a mark in addition to a label. We can
encode a k-node relation by using k distinct marks.
In this study, we determine an argument node with-
out considering other arguments of the same pred-
icate, i.e., we represent an argument relation as a
two-node relation using two marks. For example,
the relation (a) in Figure 1 can be represented as the
marked ordered labeled tree (a’).1

1Note that we use mark *0 for the predicate node and mark
*1 for the argument node.

Table 1: Notations for MOLT kernel.

• ni denotes a node of a tree. In this paper, ni is an ID assigned in the
post-order traversal.

• |Ti| denotes the number of nodes in tree Ti.

• l(ni) returns the label of node ni.

• m(ni) returns the mark of node ni. If ni has no mark, m(ni)
returns the special mark no-mark.

• marked(ni) returns true iff m(ni) is not no-mark.

• nc(ni) is the number of children of node ni.

• chk(ni) is the k-th child of node ni.

• pa(ni) is the parent of node ni.

• root(Ti) is the root node of Ti

• ni ≽ nj means that ni is an elder sister of nj .

Kazama and Torisawa (2005) presented a kernel
on marked ordered trees (the MOLT kernel), which
is defined as:2

K(T1, T2) =
E∑

i=1

W (Si) ·#Si(T1) ·#Si(T2),

where Si is a possible subtree and #Si(Tj) is
the number of times Si is included in Tj . The
mapping corresponding to this kernel is Φ(T ) =
(
√

W (S1)#S1(T ), · · · ,
√

W (SE)#SE
(T )), which

maps the tree into the feature space of all the possi-
ble subtrees.

The tree inclusion is defined in many ways. For
example, Kashima and Koyanagi (2002) presented
the following type of inclusion.

1 DEFINITION S is included in T iff there exists a
one-to-one function ψ from a node of S to a node
of T , such that (i) pa(ψ(ni)) = ψ(pa(ni)), (ii)
ψ(ni) ≽ ψ(nj) iff ni ≽ nj , , and (iii) l(ψ(ni)) =
l(ni) (and m(ψ(ni)) = m(ni) in the MOLT kernel).

See Table 1 for the meaning of each function. This
definition means that any subtrees preserving the
parent-child relation, the sibling relation, and label-
marks, are allowed. In this paper, we employ this
definition, since Kazama and Torisawa (2005) re-
ported that the MOLT kernel with this definition has
a higher accuracy than one with the definition pre-
sented by Collins and Duffy (2001).

W (Si) is the weight of subtree Si. The weight-
ing in Kazama and Torisawa (2005) is written as fol-

2This notation is slightly different from (Kazama and Tori-
sawa, 2005).
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Table 2: Example of subtree inclusion and sub-
tree weights. The last row shows the weights for
WMOLT kernel.

T included subtrees

W (Si) 0 λ λ λ2 λ2 λ3

W (Si) 0 λγ λγ λ2γ λ2γ2 λ3γ2

lows.

W (Si) =

{
λ|Si| if marked(Si),
0 otherwise,

(1)

where marked(Si) returns true iff marked(ni) =
true for at least one node in tree Si. By this weight-
ing, only the subtrees with at least one mark are con-
sidered. The idea behind this is that subtrees having
no marks are not useful for relation recognition or
labeling. λ (0 ≤ λ ≤ 1) is a factor to prevent the ker-
nel values from becoming too large, which has been
used in previous studies (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002).

Table 2 shows an example of subtree inclusion
and the weights given to each included subtree. Note
that the subtrees are treated differently when the
markings are different, even if the labels are the
same.

Although the dimension of the feature space
is exponential, tree kernels can be calculated in
O(|T1||T2|) time using dynamic programming (DP)
procedures (Collins and Duffy, 2001; Kashima and
Koyanagi, 2002). The MOLT kernel also has an
O(|T1||T2|) DP procedure (Kazama and Torisawa,
2005).

3.3 WMOLT kernel

Although Kazama and Torisawa (2005) evaluated
the MOLT kernel for SRL, the evaluation was only
on the role assignment task and was preliminary. We
evaluated the MOLT kernel for argument recogni-
tion, and found that the MOLT kernel cannot achieve
a high accuracy for argument recognition.

The problem is that the MOLT kernel treats sub-
trees with one mark and subtrees with two marks
equally, although the latter seems to be more impor-
tant in distinguishing difficult arguments.

Consider the sentence, “He said industry should

build plants”. For “say”, we have the following la-
beling.

[A0 He] [V said] [A1 industry should build plants]

On the other hand, for “build”, we have

He said [A0 industry] [AM-MOD should] [V build]
[A1 plants].

As can be seen, “he” is the A0 argument of “say”,
but not an argument of “build”. Thus, our classifier
should return a +1 for the tree where “he” is marked
when the predicate is “say”, and a -1 when the pred-
icate is “build”. Although the subtrees around the
node for “say” and “build” are different, the subtrees
around the node for “he” are identical for both cases.
If “he” is often the A0 argument in the corpus, it is
likely that the classifier returns a +1 even for “build”.
Although the subtrees containing both the predicate
and the argument nodes are considered in the MOLT
kernel, they are given relatively small weights by Eq.
(1), since such subtrees are large.

Thus, we modify the MOLT kernel so that the
mark can be weighted according to its importance
and the more marks the subtrees contain, the more
weights they get. The modification is simple. We
change the definition of W (Si) as follows.

W (Si) =

{
λ|Si| ∏

ni∈Si
γ(m(ni)) if marked(Si),

0 otherwise,

where γ(m) (≥ 1) is the weight of mark m. We
call a kernel with this weight the WMOLT kernel.
In this study, we assume γ(no-mark) = 1 and
γ(*0) = γ(*1) = γ. Then, the weight is simpli-
fied as follows.

W (Si) =

{
λ|Si|γ#m(Si) if marked(Si),
0 otherwise,

where #m(Si) is the number of marked nodes in
Si. The last row in Table 2 shows how the subtree
weights change by introducing this mark weighting.

For the WMOLT kernel, we can derive
O(|T1||T2|) DP procedure by slightly modify-
ing the procedure presented by Kazama and
Torisawa (2005). The method for speeding up
training described in Kazama and Torisawa (2005)
can also be applied with a slight modification.
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Algorithm 3.1: WMOLT-KERNEL(T1, T2)

for n1 ← 1 to |T1| do // nodes are ordered by the post-order traversal
m ← marked(n1)
for n2 ← 1 to |T2| do // actually iterate only on n2 with l(n1) = l(n2)
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:

if l(n1) ̸= l(n2) or m(n1) ̸= m(n2) then
C(n1, n2) ← 0 Cr(n1, n2) ← 0

else if n1 and n2 are leaf nodes then
if m then C(n1, n2) ← λ · γ; Cr(n1, n2) ← λ · γ else C(n1, n2) ← λ; Cr(n1, n2) ← 0

else
S(0, j) ← 1, S(i, 0) ← 1 (i ∈ [0, nc(n1)], j ∈ [0, nc(n2)])
if m then Sr(0, j) ← 1, Sr(i, 0) ← 1 else Sr(0, j) ← 0, Sr(i, 0) ← 0
for i ← 1 to nc(n1) do

for j ← 1 to nc(n2) do
S(i, j) ← S(i−1, j) + S(i, j−1)− S(i−1, j−1) + S(i−1, j−1) · C(chi(n1), chj(n2))
Sr(i, j) ← Sr(i−1, j) + Sr(i, j−1)− Sr(i−1, j−1) + Sr(i−1, j−1) · C(chi(n1), chj(n2))

+S(i−1, j−1) · Cr(chi(n1), chj(n2))− Sr(i−1, j−1) · Cr(chi(n1), chj(n2))
if m then C(n1, n2) ← λ · γ · S(nc(n1), nc(n2)) else C(n1, n2) ← λ · S(nc(n1), nc(n2))
if m then Cr(n1, n2) ← λ · γ · Sr(nc(n1), nc(n2)) else Cr(n1, n2) ← λ · Sr(nc(n1), nc(n2))

return (
P|T1|

n1=1

P|T2|
n2=1 Cr(n1, n2))

We describe this DP procedure in some detail.
The key is the use of two DP matrices of size
|T1| × |T2|. The first is C(n1, n2) defined as:

C(n1, n2)≡
P

Si
W ′(Si) ·#Si(T1 △ n1) ·#Si(T2 △ n2),

where #Si(Tj △ nk) represents the number of times
subtree Si is included in tree Tj with ψ(root(Si)) =
nk. W ′(Si) is defined as W ′(Si) = λ|Si|γ#m(Si).
This means that this matrix records the values that
ignore whether marked(Si) = true or not. The
second is Cr(n1, n2) defined as:

Cr(n1, n2)≡
P

Si
W (Si) ·#Si(T1 △ n1) ·#Si(T2 △ n2).

With these matrices, the kernel is calculated as:

K(T1, T2) =
∑

n1∈T1

∑
n2∈T2

Cr(n1, n2).

C(n1, n2) and Cr(n1, n2) are calculated recur-
sively, starting from the leaves of the trees. The re-
cursive procedure is shown in Algorithm 3.1. See
also Table 1 for the meaning of the functions used.

4 Fast Argument Recognition

We use the SVMs for the classifiers in argument
recognition in this study and describe the fast clas-
sification method based on SVMs.3 We denote a
marked ordered labeled tree where node nk of an
ordered labeled tree U is marked by mark X , nl by
Y , and so on, by U@{nk = X,nl = Y, . . . }.

3The method can be applied to a wide range of kernel-based
methods that have the same structure as SVMs.

Algorithm 4.1: CALCULATE-T(U, Tj)

procedure FAST-UPDATE(nk)
diff ← 0, m(nk) ← *1, U ← φ
for n2 ← 1 to |Tj | do change(n2) ← true
n1 ← nk

while n1 ̸= nil do
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

for n2 ← 1 to |Tj | do
// actually iterate only on n2 with l(pa(n1)) = l(n2)
nchange(n2) ← false

for n2 ← 1 to |Tj | do
// actually iterate only on n2 with l(n1) = l(n2)
if change(n2) then

pre ← Cr(n1, n2), U ← U ∪ (n1, n2)
update C(n1, n2) and Cr(n1, n2)

using (A) of Algorithm 3.1
diff += (Cr(n1, n2)− pre)
if pa(n2) ̸= nil then nchange(pa(n2)) ← true

n1 ← pa(n1), change ← nchange
for (n1, n2) ∈ U do //restore DP cells

C(n1, n2) ← C′(n1, n2), Cr(n1, n2) ← Cr ′(n1, n2)
m(nk) ← no-mark
return (diff )

main
m(nv) ← ∗0, k ← WMOLT-KERNEL(U, Tj)
C′(n1, n2) ← C(n1, n2), Cr ′(n1, n2) ← Cr(n1, n2)
for nk ← 1 to |U | do (nk ̸= nv)

diff ← FAST-UPDATE(nk), t(nk) ← k + diff

Given a sentence represented by tree U and the
node for the target predicate nv, the argument recog-
nition requires the calculation of:

s(nk) =
∑

Tj∈SV
αjK(U@{nv =*0, nk =*1}, Tj)+b,

(2)
for all nk ∈ U (̸= nv), where SV represents the
support vectors. Naively, this requires O(|U | ×
|SV| × |U ||Tj |) time, which is rather costly in prac-
tice.
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However, if we exploit the fact that U@{nv =
*0, nk = *1} is different from U@{nv = *0} at one
node, we can greatly speed up the above calculation.
At first, we calculate K(U@{nv = *0}, Tj) using
the DP procedure presented in the previous section,
and then calculate K(U@{nv = *0, nk = *1}, Tj)
using a more efficient DP that updates only the val-
ues of the necessary DP cells of the first DP. More
specifically, we only need to update the DP cells in-
volving the ancestor nodes of nk.

Here we show the procedure for calculating
t(nk) = K(U@{nv = *0, nk = *1}, Tj) for all
nk for a given support vector Tj , which will suf-
fice for calculating s(nk). Algorithm 4.1 shows the
procedure. For each nk, this procedure updates at
most (nk’s depth) × |Tj | cells, which is much less
than |U | × |Tj | cells. In addition, when updating
the cells for (n1, n2), we only need to update them
when the cells for any child of n2 have been updated
in the calculation of the cells for the children of n1.
To achieve this, change(n2) in the algorithm stores
whether the cells of any child of n2 have been up-
dated. This technique will also reduce the number
of updated cells.

5 Non-overlapping Constraint

Finally, in argument recognition, there is a strong
constraint that the arguments for a given predicate
do not overlap each other. To enforce this constraint,
we employ the approach presented by Toutanova
et al. (2005). Given the local classification proba-
bility p(nk = Xk) (Xk ∈ {ARG, NO-ARG}),
this method finds the assignment that maximizes∏

k p(nk = Xk) while satisfying the above non-
overlapping constraint, by using a dynamic pro-
gramming procedure. Since the output of SVMs is
not a probability value, in this study we obtain the
probability value by converting the output from the
SVM, s(nk), using the sigmoid function:4

p(nk = ARG) = 1/(1 + exp(−s(nk))).

6 Evaluation

6.1 Setting
For our evaluation we used the dataset pro-
vided for the CoNLL 2005 SRL shared task

4Parameter fitting (Platt, 1999) is not performed.

(www.lsi.upc.edu/˜srlconll). We used only the train-
ing part and divided it into our training, develop-
ment, and test sets (23,899, 7,966, and 7,967 sen-
tences, respectively). We used the outputs of the
Charniak parser provided with the dataset. We also
used POS tags, which were also provided, by insert-
ing the nodes labeled by POS tags above the word
nodes. The words were downcased.

We used TinySVM5 as the implementation of the
SVMs, adding the WMOLT kernel. We normalized
the kernel as: K(Ti, Tj)/

√
K(Ti, Ti)×K(Tj , Tj).

To train the classifiers, for a positive example we
used the marked ordered labeled tree that encodes
an argument in the training set. Although nodes
other than the argument nodes were potentially neg-
ative examples, we used 1/5 of these nodes that were
randomly-sampled, since the number of such nodes
is so large that the training cannot be performed in
practice. Note that we ignored the arguments that
do not match any node in the tree (the rate of such
arguments was about 3.5% in the training set).

6.2 Effect of mark weighting

We first evaluated the effect of the mark weight-
ing of the WMOLT kernel. For several fixed γ, we
tuned λ and the soft-margin constant of the SVM, C,
and evaluated the recognition accuracy. We tested
30 different values of C ∈ [0.1 . . . 500] for each
λ ∈ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]. The tuning was
performed using the method for speeding up the
training with tree kernels described by Kazama and
Torisawa (2005). We conducted the above experi-
ment for several training sizes.

Table 3 shows the results. This table shows the
best setting of λ and C, the performance on the de-
velopment set with the best setting, and the perfor-
mance on the test set. The performance is shown
in the F1 measure. Note that we treated the region
labeled C-k in the CoNLL 2005 dataset as an inde-
pendent argument.

We can see that the mark weighting greatly im-
proves the accuracy over the original MOLT kernel
(i.e., γ = 1). In addition, we can see that the best
setting for γ is somewhere around γ = 4, 000. In
this experiment, we could only test up to 1,000 sen-
tences due to the cost of SVM training, which were

5chasen.org/˜taku/software/TinySVM
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Table 3: Effect of γ in mark weighting of WMOLT kernel.
training size (No. of sentences)

250 500 700 1,000
setting dev test setting dev test setting dev test setting dev test

γ (λ,C) (F1) (F1) (λ,C) (F1) (F1) (λ,C) (F1) (F1) (λ,C) (F1) (F1)
1 0.15, 20.50 63.66 65.13 0.2, 20.50 69.01 70.33 0.2, 20.50 72.11 73.57 0.25, 12.04 75.38 76.25
100 0.3, 12.04 80.13 80.85 0.3,500 82.25 82.98 0.3, 34.92 83.93 84.72 0.3, 3.18 85.09 85.85
1,000 0.2, 2.438 82.65 83.36 0.2, 2.438 84.80 85.45 0.2, 3.182 85.58 86.20 0.2, 7.071 86.40 86.80
2,000 0.2, 2.438 83.43 84.12 0.2, 2.438 85.56 86.24 0.2, 2.438 86.23 86.80 0.2, 12.04 86.61 87.18
4,000 0.2, 2.438 83.87 84.50 0.15, 4.15 84.94 85.61 0.15, 7.07 85.84 86.32 0.2, 12.04 86.82 87.31
4,000 (w/o) 80.81 81.41 80.71 81.51 81.86 82.33 84.27 84.63

empirically O(L2) where L is the number of train-
ing examples, regardless of the use of the speed-up
method (Kazama and Torisawa, 2005), However, we
can observe that the WMOLT kernel achieves a high
accuracy even when the training data is very small.

6.3 Effect of non-overlapping constraint

Additionally, we observed how the accuracy
changes when we do not use the method described
in Section 5 and instead consider the node to be an
argument when s(nk) > 0. The last row in Ta-
ble 3 shows the accuracy for the model obtained
with γ = 4, 000. We could observe that the non-
overlapping constraint also improves the accuracy.

6.4 Recognition speed-up

Next, we examined the method for fast argument
recognition described in Section 4. Using the clas-
sifiers with γ = 4, 000, we measured the time re-
quired for recognizing the arguments for 200 sen-
tences with the naive classification of Eq. (2) and
with the fast update procedure shown in Algorithm
4.1. The time was measured using a computer with
2.2-GHz dual-core Opterons and 8-GB of RAM.

Table 4 shows the results. We can see a constant
speed-up by a factor of more than 40, although the
time was increased for both methods as the size of
the training data increases (due to the increase in the
number of support vectors).

Table 4: Recognition time (sec.) with naive classifi-
cation and proposed fast update.

training size (No. of sentences)
250 500 750 1,000

naive 11,266 13,008 18,313 30,226
proposed 226 310 442 731
speed-up 49.84 41.96 41.43 41.34

6.5 Evaluation on CoNLL 2005 evaluation set

To compare the performance of our system with
other systems, we conducted the evaluation on the
official evaluation set of the CoNLL 2005 shared
task. We used a model trained using 2,000 sen-
tences (57,547 examples) with (γ = 4, 000, λ =
0.2, C = 12.04), the best setting in the previous ex-
periments. This is the largest model we have suc-
cessfully trained so far, and has F1 = 88.00 on the
test set in the previous experiments.

The accuracy of this model on the official evalua-
tion set was F1 = 79.96 using the criterion from the
previous experiments where we treated a C-k argu-
ment as an independent argument. The official eval-
uation script returned F1 = 78.22. This difference
is caused because the official script takes C-k argu-
ments into consideration, while our system cannot
output C-k labels since it is just an argument rec-
ognizer. Therefore, the performance will become
slightly higher than F1 = 78.22 if we perform the
role assignment step. However, our current system
is worse than the systems reported in the CoNLL
2005 shared task in any case, since it is reported that
they had F1 = 79.92 to 83.78 argument recognition
accuracy (Carreras and Màrquez, 2005).

7 Discussion

Although we have improved the accuracy by intro-
ducing the WMOLT kernel, the accuracy for the offi-
cial evaluation set was not satisfactory. One possible
reason is the accuracy of the parser. Since the Char-
niak parser is trained on the same set with the train-
ing set of the CoNLL 2005 shared task, the pars-
ing accuracy is worse for the official evaluation set
than for the training set. For example, the rate of the
arguments that do not match any node of the parse
tree is 3.93% for the training set, but 8.16% for the
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evaluation set. This, to some extent, explains why
our system, which achieved F1 = 88.00 for our test
set, could only achieved F1 = 79.96. To achieve a
higher accuracy, we need to make the system more
robust to parsing errors. Some of the non-matching
arguments are caused by incorrect treatment of quo-
tation marks and commas. These errors seem to be
solved by using simple pre-processing. Other major
non-matching arguments are caused by PP attach-
ment errors. To solve these errors, we need to ex-
plore more, such as using n-best parses and the use
of several syntactic views (Pradhan et al., 2005b).

Another reason for the low accuracy is the size of
the training data. In this study, we could train the
SVM with 2,000 sentences (this took more than 30
hours including the conversion of trees), but this is
a very small fraction of the entire training set. We
need to explore the methods for incorporating a large
training set within a reasonable training time. For
example, the combination of small SVMs (Shen et
al., 2003) is a possible direction.

The contribution of this study is not the accuracy
achieved. The first contribution is the demonstration
of the drastic effect of the mark weighting. We will
explore more accurate kernels based on the WMOLT
kernel. For example, we are planning to use dif-
ferent weights depending on the marks. The sec-
ond contribution is the method of speeding-up argu-
ment recognition. This is of great importance, since
the proposed method can be applied to other tasks
where all nodes in a tree should be classified. In ad-
dition, this method became possible because of the
WMOLT kernel, and it is hard to apply to Moschitti
and Bejan (2004) where the tree structure changes
during recognition. Thus, the architecture that uses
the WMOLT kernel is promising, if we assume fur-
ther progress is possible with the kernel design.

8 Conclusion
We proposed a method for recognizing semantic role
arguments using the WMOLT kernel. The mark
weighting introduced in the WMOLT kernel greatly
improved the accuracy. In addition, we presented
a method for speeding up the recognition, which re-
sulted in more than a 40 times faster recognition. Al-
though the accuracy of the current system is worse
than the state-of-the-art system, we expect to further
improve our system.
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