
Maximum Spanning Tree Algorithm for Non-projective Labeled
Dependency Parsing

Nobuyuki Shimizu
Dept. of Computer Science

State University of New York at Albany
Albany, NY, 12222, USA

shimizu@cs.albany.edu

Abstract

Following (McDonald et al., 2005), we
present an application of a maximum
spanning tree algorithm for a directed
graph to non-projective labeled depen-
dency parsing. Using a variant of the
voted perceptron (Collins, 2002; Collins
and Roark, 2004; Crammer and Singer,
2003), we discriminatively trained our
parser in an on-line fashion. After just one
epoch of training, we were generally able
to attain average results in the CoNLL
2006 Shared Task.

1 Introduction

Recently, we have seen dependency parsing grow
more popular. It is not rare to see dependency re-
lations used as features, in tasks such as relation ex-
traction (Bunescu and Mooney, 2005) and machine
translation (Ding and Palmer, 2005). Although En-
glish dependency relations are mostly projective, in
other languages with more flexible word order, such
as Czech, non-projective dependencies are more fre-
quent. There are generally two methods for learn-
ing non-projective dependencies. You could map a
non-projective dependency tree to a projective one,
learn and predict the tree, then bring it back to the
non-projective dependency tree (Nivre and Nilsson,
2005). Non-projective dependency parsing can also
be represented as search for a maximum spanning
tree in a directed graph, and this technique has been
shown to perform well in Czech (McDonald et al.,

2005). In this paper, we investigate the effective-
ness of (McDonald et al., 2005) in the various lan-
guages given by the CoNLL 2006 shared task for
non-projective labeled dependency parsing.

The paper is structured as follows: in section 2
and 3, we review the decoding and learning aspects
of (McDonald et al., 2005), and in section 4, we de-
scribe the extension of the algorithm and the features
needed for the CoNLL 2006 shared task.

2 Non-Projective Dependency Parsing

2.1 Dependency Structure

Let us definex to be a generic sequence of input to-
kens together with their POS tags and other morpho-
logical features, andy to be a generic dependency
structure, that is, a set of edges forx. We use the
terminology in (Taskar et al., 2004) for a generic
structured output prediction, and define apart.

A part represents an edge together with its label.
A part is a tuple〈DEPREL, i, j〉 wherei is the start
point of the edge,j is the end point, andDEPRELis
the label of the edge. The token ati is the head of
the token atj.

Table 1 shows our formulation of building a non-
projective dependency tree as a prediction problem.
The task is to predicty, the set of parts (column 3,
Table 1), givenx, the input tokens and their features
(column 1 and 2, Table 1).

In this paper we use the common method of fac-
toring the score of the dependency structure as the
sum of the scores of all the parts.

A dependency structure is characterized by its
features, and for each feature, we have a correspond-

Token POS Edge Part
John NN 〈SUBJ, 2, 1〉
saw VBD 〈PRED, 0, 2〉
a DT 〈DET, 4, 3〉
dog NN 〈OBJ, 2, 4〉
yesterday RB 〈ADJU, 2, 5〉
which WDT 〈MODWH, 7, 6〉
was VBD 〈MODPRED, 4, 7〉
a DT 〈DET, 10, 8〉
Yorkshire NN 〈MODN, 10, 9〉
Terrier NN 〈OBJ, 7, 10〉
. . 〈., 10, 11〉

Table 1: Example Parts

ing weight. The score of a dependency structure
is the sum of these weights. Now, the dependency
structures are factored by the parts, so that each fea-
ture is some type of a specialization of a part. Each
part in a dependency structure maps to several fea-
tures. If we sum up the weights for these features,
we have the score for the part, and if we sum up the
scores of the parts, we have the score for the depen-
dency structure.

For example, let us say we would like to find the
score of the part〈OBJ, 2, 4〉. This is the edge going
to the 4th token ”dog” in Table 1. Suppose there are
two features for this part.

• There is an edge labeled with ”OBJ” that points
to the right. (=DEPREL, dir(i, j))

• There is an edge labeled with ”OBJ” starting at
the token ”saw” which points to the right. (=
DEPREL, dir(i, j), wordi)

If a statement is never true during the training, the
weight for it will be 0. Otherwise there will be a
positive weight value. The score will be the sum of
all the weights of the features given by the part.

In the upcoming section, we explain a decoding
algorithm for the dependency structures, and later
we give a method for learning the weight vector used
in the decoding.

2.2 Maximum Spanning Tree Algorithm

As in (McDonald et al., 2005), the decoding algo-
rithm we used is the Chu-Liu-Edmonds (CLE) al-
gorithm (Chu and Liu, 1965; Edmonds, 1967) for
finding the Maximum Spanning Tree in a directed
graph. The following is a nice summary by (Mc-
Donald et al., 2005).

Informally, the algorithm has each vertex
in the graph greedily select the incoming
edge with highest weight.

Note that the edge is coming from the parent to the
child. This means that given a child nodewordj, we
are finding the parent, or the headwordi such that
the edge(i, j) has the highest weight among alli,
i 6= j.

If a tree results, then this must be the max-
imum spanning tree. If not, there must be
a cycle. The procedure identifies a cycle
and contracts it into a single vertex and
recalculates edge weights going into and
out of the cycle. It can be shown that a
maximum spanning tree on the contracted
graph is equivalent to a maximum span-
ning tree in the original graph (Leonidas,
2003). Hence the algorithm can recur-
sively call itself on the new graph.

3 Online Learning

Again following (McDonald et al., 2005), we have
used the single best MIRA (Crammer and Singer,
2003), which is a variant of the voted perceptron
(Collins, 2002; Collins and Roark, 2004) for struc-
tured prediction. In short, the update is executed
when the decoder fails to predict the correct parse,
and we compare the correct parseyt and the incor-
rect parsey′ suggested by the decoding algorithm.
The weights of the features iny′ will be lowered, and
the weights of the features inyt will be increased ac-
cordingly.

4 Experiments

Our experiments were conducted on CoNLL-X
shared task, with various datasets (Hajič et al., 2004;
Simov et al., 2005; Simov and Osenova, 2003; Chen
et al., 2003; Böhmová et al., 2003; Kromann, 2003;
van der Beek et al., 2002; Brants et al., 2002;
Kawata and Bartels, 2000; Afonso et al., 2002;
Džeroski et al., 2006; Civit Torruella and Martı́ An-
tonı́n, 2002; Nilsson et al., 2005; Oflazer et al.,
2003; Atalay et al., 2003) .

4.1 Dependency Relation

The CLE algorithm works on a directed graph with
unlabeled edges. Since the CoNLL-X shared task

Given a part〈DEPREL, i, j〉
DEPREL, dir(i, j)
DEPREL, dir(i, j), wordi

DEPREL, dir(i, j), posi

DEPREL, dir(i, j), wordj

DEPREL, dir(i, j), posj

DEPREL, dir(i, j), wordi, posi

DEPREL, dir(i, j), wordj , posj

DEPREL, dir(i, j), wordi−1

DEPREL, dir(i, j), posi−1

DEPREL, dir(i, j), wordi−1, posi−1

DEPREL, dir(i, j), wordj−1

DEPREL, dir(i, j), posj−1

DEPREL, dir(i, j), wordj−1, posj−1

DEPREL, dir(i, j), wordi+1

DEPREL, dir(i, j), posi+1

DEPREL, dir(i, j), wordi+1, posi+1

DEPREL, dir(i, j), wordj+1

DEPREL, dir(i, j), posj+1

DEPREL, dir(i, j), wordj+1, posj+1

DEPREL, dir(i, j), posi−2

DEPREL, dir(i, j), posi+2

DEPREL, dir(i, j), distance =|j − i|
additional features
DEPREL, dir(i, j), wordi, wordj

DEPREL, dir(i, j), posi+1, posi, posi+1

DEPREL, dir(i, j), posi+1, wordi, posi+1

DEPREL, dir(i, j), wordi, posi, posj

DEPREL, dir(i, j), posi, wordj , posj

Table 2: Binary Features for Each Part

requires the labeling of edges, as a preprocessing
stage, we created a directed complete graph with-
out multi-edges, that is, given two distinct nodesi

and j, exactly two edges exist between them, one
from i to j, and the other fromj to i. There is no
self-pointing edge. Then we labeled each edge with
the highest scoring dependency relation. This com-
plete graph was given to the CLE algorithm and the
edge labels were never altered in the course of find-
ing the maximum spanning tree. The result is the
non-projective dependency tree with labeled edges.

4.2 Features

The features we used to score each part (edge)
〈DEPREL, i, j〉 are shown in Table 2. The indexi
is the position of the parent andj is that of the child.

wordj = the word token at the positionj.
posj = the coarse part-of-speech atj.
dir(i, j) = R if i < j, and L otherwise.

No other features were used beyond the combina-
tions of the CPOS tag and the word token in Table 2.

We have evaluated our parser on Arabic, Danish,
Slovene, Spanish, Turkish and Swedish, and used

the ”additional features” listed in Table 2 for all lan-
guages except for Danish and Swedish. The reason
for this is simply that the model with the additional
features did not fit in the 4 GB of memory used in
the training.

Although we could do batch learning by running
the online algorithm multiple times, we run the on-
line algorithm just once. The hardware used is an
Intel Pentinum D at 3.0 Ghz with 4 GB of memory,
and the software was written in C++. The training
time required was Arabic 204 min, Slovene 87 min,
Spanish 413 min, Swedish 1192 min, Turkish 410
min, Danish 381 min.

5 Results

The results are shown in Table 3. Although our fea-
ture set is very simple, the results were around the
averages. We will do error analysis of three notable
languages: Arabic, Swedish and Turkish.

5.1 Arabic

Of 4990 words in the test set, 800 are prepositions.
The prepositions are the most frequently found to-
kens after nouns in this set. On the other hand,
our head attachment error was 44% for prepositions.
Given the relatively large number of prepositions
found in the test set, it is important to get the prepo-
sition attachment right to achieve a higher mark in
this language. The obvious solution is to have a fea-
ture that connects the head of a preposition to the
child of the preposition. However, such a feature
effects the edge based factoring and the decoding al-
gorithm, and we will be forced to modify the MST
algorithm in some ways.

5.2 Swedish

Due to the memory constraint on the computer, we
did not use the additional features for Swedish and
our feature heavily relied on the CPOS tag. At the
same time, we have noticed that relatively higher
performance of our parser compared to the average
coincides with the bigger tag set for CPOS for this
corpus. This suggests that we should be using more
fine grained POS in other languages.

5.3 Turkish

The difficulty with parsing Turkish stems from the
large unlabeled attachment error rate on the nouns

Language LAS AV SD
Arabic 62.83% 59.92% 6.53
Danish 75.81% 78.31% 5.45
Slovene 64.57% 65.61% 6.78
Spanish 73.17% 73.52% 8.41
Swedish 79.49% 76.44% 6.46
Turkish 54.23% 55.95% 7.71
Language UAS AV SD
Arabic 74.27% 73.48% 4.94
Danish 81.72% 84.52% 4.29
Slovene 74.88% 76.53% 4.67
Spanish 77.58% 77.76% 7.81
Swedish 86.62% 84.21% 5.45
Turkish 68.77% 69.35% 5.51

Table 3: Labeled and Unlabeled Attachment Score

(39%). Since the nouns are the most frequently oc-
curring words in the test set (2209 out of 5021 to-
tal), this seems to make Turkish the most challeng-
ing language for any system in the shared task. On
the average, there are 1.8 or so verbs per sentence,
and nouns have a difficult time attaching to the cor-
rect verb or postposition. This, we think, indicates
that there are morphological features or word order-
ing features that we really need in order to disam-
biguate them.

6 Future Work

As well as making use of fine-grained POS tags and
other morphological features, given the error analy-
sis on Arabic, we would like to add features that are
dependent on two or more edges.

6.1 Bottom-Up Non-Projective Parsing

In order to incorporate features which depend on
other edges, we propose Bottom-Up Non-Projective
Parsing. It is often the case that dependency rela-
tions can be ordered by how close one relation is to
the root of dependency tree. For example, the de-
pendency relation between a determiner and a noun
should be decided before that between a preposition
and a noun, and that of a verb and a preposition, and
so on. We can use this information to do bottom-up
parsing.

Suppose all words have a POS tag assigned to
them, and every edge labeled with a dependency re-
lation is attached to a specific POS tag at the end
point. Also assume that there is an ordering of POS
tags such that the edge going to the POS tag needs
be decided before other edges. For example, (1) de-

terminer, (2) noun, (3) preposition, (4) verb would
be one such ordering. We propose the following al-
gorithm:

• Assume we have tokens as nodes in a graph and no edges
are present at first. For example, we have tokens ”I”,
”ate”, ”with”, ”a”, ”spoon”, and no edges between them.

• Take the POS tag that needs to be decided next. Find all
edges that go to each token labeled with this POS tag,
and put them in the graph. For example, if the POS is
noun, put edges from ”ate” to ”I”, from ”ate” to ”spoon”,
from ”with” to ”I”, from ”with” to ”spoon”, from ”I” to
”spoon”, and from ”spoon” to ”I”.

• Run the CLE algorithm on this graph. This selects the
highest incoming edge to each token with the POS tag we
are looking at, and remove cycles if any are present.

• Take the resulting forests and for each edge, bring the in-
formation on the child node to the parent node. For ex-
ample, if this time POS was noun, and there is an edge to
a preposition ”with” from a noun ”spoon”, then ”spoon”
is absorbed by ”with”. Note that since no remaining de-
pendency relation will attach to ”spoon”, we can safely
ignore ”spoon” from now on.

• Go back and repeat until no POS is remaining and we
have a dependency tree. Now in the next round, when
deciding the score of the edge from ”ate” to ”with”, we
can use the all information at the token ”with”, including
”spoon”.

7 Conclusion

We have extended non-projective unlabeled de-
pendency parsing (McDonald et al., 2005) to a
very simple non-projective labeled dependency and
showed that the parser performs reasonably well
with small number of features and just one itera-
tion of training. Based on the analysis of the Ara-
bic parsing results, we have proposed a bottom-
up non-projective labeled dependency parsing algo-
rithm that allows us to use features dependent on
more than one edge, with very little disadvantage
compared to the original algorithm.

References

A. Abeillé, editor. 2003.Treebanks: Building and Us-
ing Parsed Corpora, volume 20 ofText, Speech and
Language Technology. Kluwer Academic Publishers,
Dordrecht.

S. Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Flo-
resta sintá(c)tica”: a treebank for Portuguese. InProc.
of the Third Intern. Conf. on Language Resources and
Evaluation (LREC), pages 1698–1703.

N. B. Atalay, K. Oflazer, and B. Say. 2003. The annota-
tion process in the Turkish treebank. InProc. of the 4th
Intern. Workshop on Linguistically Interpreteted Cor-
pora (LINC).

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(Abeillé, 2003), chapter 7.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.
2002. The TIGER treebank. InProc. of the
First Workshop on Treebanks and Linguistic Theories
(TLT).

R. Bunescu and R. Mooney. 2005. A shortest path de-
pendency kernel for relation extraction. InProc. of
the Joint Conf. on Human Language Technology and
Empirical Methods in Natural Language Processing
(HLT/EMNLP).

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Abeillé
(Abeillé, 2003), chapter 13, pages 231–248.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. InScience Sinica, page
14:13961400.

M. Civit Torruella and Ma A. Martı́ Antonı́n. 2002. De-
sign principles for a Spanish treebank. InProc. of the
First Workshop on Treebanks and Linguistic Theories
(TLT).

M. Collins and B. Roark. 2004. Incremental parsing with
the perceptron algorithm. InProc. of the 42rd Annual
Meeting of the ACL.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. InProc. of Empirical Methods
in Natural Language Processing (EMNLP).

K. Crammer and Y. Singer. 2003. Ultraconservative on-
line algorithms for multiclass problems. InJMLR.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. InProc. of the 43rd Annual Meeting of the ACL.

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas,
Z. Žabokrtsky, and A.̌Zele. 2006. Towards a Slovene
dependency treebank. InProc. of the Fifth Intern.
Conf. on Language Resources and Evaluation (LREC).

J. Edmonds. 1967. Optimum branchings. InJournal of
Research of the National Bureau of Standards, page
71B:233240.

J. Hajič, O. Smrž, P. Zemánek, J.Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. InProc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

Y. Kawata and J. Bartels. 2000. Stylebook for the
Japanese treebank in VERBMOBIL. Verbmobil-
Report 240, Seminar für Sprachwissenschaft, Univer-
sität Tübingen.

M. T. Kromann. 2003. The Danish dependency treebank
and the underlying linguistic theory. InProc. of the
Second Workshop on Treebanks and Linguistic Theo-
ries (TLT).

G. Leonidas. 2003. Arborescence optimization problems
solvable by edmonds algorithm. InTheoretical Com-
puter Science, page 301:427 437.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning
tree algorithms. InProc. of the Joint Conf. on Hu-
man Language Technology and Empirical Methods in
Natural Language Processing (HLT/EMNLP).

J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets
TIGER: Reconstructing a Swedish treebank from an-
tiquity. In Proc. of the NODALIDA Special Session on
Treebanks.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. InProc. of the 43rd Annual Meeting of
the ACL.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15.

K. Simov and P. Osenova. 2003. Practical annotation
scheme for an HPSG treebank of Bulgarian. InProc.
of the 4th Intern. Workshop on Linguistically Inter-
preteted Corpora (LINC), pages 17–24.

K. Simov, P. Osenova, A. Simov, and M. Kouylekov.
2005. Design and implementation of the Bulgarian
HPSG-based treebank. InJournal of Research on Lan-
guage and Computation – Special Issue, pages 495–
522. Kluwer Academic Publishers.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. InProc. of
Empirical Methods in Natural Language Processing
(EMNLP).

L. van der Beek, G. Bouma, R. Malouf, and G. van No-
ord. 2002. The Alpino dependency treebank. InCom-
putational Linguistics in the Netherlands (CLIN).

