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Modeling time series

Sequence of observations:
y1,y2,y3, . . . ,yt

For example:

• Sequence of images

• Speech signals

• Stock prices

• Kinematic variables in a robot

• Sensor readings from an industrial process

• Amino acids, etc. . .

Goal: To build a probilistic model of the data:
something that can predict p(yt|yt! 1,yt! 2,yt! 3 . . .)
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Causal structure and “hidden variables”
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Speech recognition:

• x - underlying phonemes or words

• y - acoustic waveform

Vision:

• x - object identities, poses, illumination

• y - image pixel values

Industrial Monitoring:

• x - current state of molten steel in caster

• y - temperature and pressure sensor readings

Two frequently-used tractable models:

• Linear-Gaussian state-space models

• Hidden Markov models
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Graphical Model for HMM
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• Discrete hidden states st ∈ {1 . . . , K}, and outputs yt (discrete or continuous).
Joint probability factorizes:

P(s1, . . . , sτ ,y1 . . . ,yτ) = P(s1)P(y1|s1)
τ∏

t=2

P(st|st−1)P(yt|st)

• a Markov chain with stochastic measurements:

x1

y1 y2

x2 x3

y3

xt

yt

• or a mixture model with states coupled across time:

x1

y1 y2

x2 x3

y3

xt

yt
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Hidden Markov Models

• Hidden Markov models (HMMs) are widely used, but how do we choose 
the number of hidden states?
– Variational Bayesian learning of HMMs
– A non-parametric Bayesian approach: infinite HMMs.

• Can we extract richer structure from sequences by grouping together 
states in an HMM?
– Block-diagonal iHMMs.

• A single discrete state variable is a poor representation of the history. 
Can we do better?
– Factorial HMMs 

• Can we make Factorial HMMs non-parametric?
– infinite factorial HMMs and the Markov Indian Buffet Process
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Part I:
 

Variational Bayesian learning 
of 

Hidden Markov Models
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Bayesian Learning

Apply the basic rules of probability to learning from data.

Data set: D = {x1, . . . , xn} Models: m, m′ etc. Model parameters: θ

Prior probability of models: P (m), P (m′) etc.
Prior probabilities of model parameters: P (θ|m)
Model of data given parameters (likelihood model): P (x|θ, m)

If the data are independently and identically distributed then:

P (D|θ, m) =
n∏

i=1

P (xi|θ, m)

Posterior probability of model parameters:

P (θ|D,m) =
P (D|θ, m)P (θ|m)

P (D|m)

Posterior probability of models:

P (m|D) =
P (m)P (D|m)

P (D)
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Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):

• The probability that randomly selected parameters from the prior would generate D.

• Probability of the data under the model, averaging over all possible parameter values.

• log2

(
1

p(D|m)

)
is the number of bits of surprise at observing data D under model m.

Model classes that are too simple are unlikely
to generate the data set.

Model classes that are too complex can
generate many possible data sets, so again,
they are unlikely to generate that particular
data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D
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Bayesian Model Comparison: Occam’s Razor at Work
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Model Evidence

For example, for quadratic polynomials (m = 2): y = a0 + a1x + a2x2 + ε, where
ε ∼ N (0,σ2) and parameters θ = (a0 a1 a2 σ)

demo: polybayes
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Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?
SVYDAAAQLTADVKKDLRDSWKVIGSDKKGNGVALMTTY

How many auditory sources in the input?

Which graph structure best models the data? A

D

C

B

Edemo: run simple
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Variational Bayesian Learning
Lower Bounding the Marginal Likelihood

Let the observed data be D, the hidden state variables be s, and the parameters be θ.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s inequality:

log P (D|m) = log
∫ ∑

s

P (D, s,θ|m) dθ

= log
∫ ∑

s

Q(s,θ)
P (D, s,θ|m)

Q(s,θ)
dθ

≥
∫ ∑

s

Q(s,θ) log
P (D, s,θ|m)

Q(s,θ)
dθ.

Here Q(s,θ) is an approximation to the posterior P (s,θ|D,m).
Assume Q(s,θ) is a simpler factorised distribution:

log P (D|m) ≥
∫ ∑

s

Qs(s)Qθ(θ) log
P (D, s,θ|m)
Qs(s)Qθ(θ)

dθ = F(Qs(s), Qθ(θ),D).

Maximize this lower bound with respect to Q leads to generalization of the EM algorithm.
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Hidden Markov Models

S 3

Y3

S 1
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YT

Discrete hidden states, st.

Observations yt.

How many hidden states?
What structure state-transition matrix?

Variational Bayesian HMMs (MacKay 1997; Beal PhD thesis 2003):

demo: vbhmm demo
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Summary of Part I

• Bayesian machine learning
• Marginal likelihoods and Occam’s Razor
• Variational Bayesian lower bounds
• Application to learning the number of 

hidden states and structure of an HMM
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Part II

The Infinite Hidden Markov Model
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Hidden Markov Models
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Choosing the number of 
hidden states

• How do we choose K, the number of 
hidden states, in an HMM?

• Can we define a model with an 
unbounded number of hidden states, 
and a suitable inference algorithm?
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Alice in Wonderland

Friday, 16 July 2010



Infinite Hidden Markov models
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Hierarchical Urn Scheme for generating 
transitions in the iHMM (2002)

• nij is the number of previous transitions from i to j
• α, β, and γ are hyperparameters
• prob. of transition from i to j proportional to nij 
• with prob. proportional to βγ  jump to a new state 
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Relating iHMMs to DPMs

• The infinite Hidden Markov Model is closely related 
to Dirichlet Process Mixture (DPM) models

• This makes sense: 
– HMMs are time series generalisations of mixture models.
– DPMs are a way of defining mixture models with countably 

infinitely many components.
– iHMMs are HMMs with countably infinitely many states.
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HMMs as sequential mixtures
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Infinite Hidden Markov Models
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Infinite Hidden Markov Models
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Infinite Hidden Markov Models

Teh, Jordan, Beal and Blei (2005)  derived iHMMs in 
terms of Hierarchical Dirichlet Processes.
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Efficient inference in iHMMs?
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Inference and Learning in HMMs and iHMMs

• HMM inference of hidden states p(st|y1…yT,θ):
– forward backward = dynamic programming = belief 

propagation 
• HMM parameter learning:

–  Baum Welch = expectation maximization (EM), or 
Gibbs sampling (Bayesian)

• iHMM inference and learning, p(st ,θ |y1…yT):
– Gibbs Sampling

• This is unfortunate: Gibbs can be very slow for 
time series!

• Can we use dynamic programming?
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Dynamic Programming in HMMs 
Forward Backtrack Sampling
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Beam Sampling
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Beam Sampling
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Auxiliary variables

Note: adding u variables, does not change distribution over other vars.
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Beam Sampling
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Experiment:  Text Prediction
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Experiment:  Changepoint Detection
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Experiment:  Changepoint Detection
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Parallel and Distributed 
Implementations of iHMMs

• Recent work on parallel (.NET) and distributed 
(Hadoop) implementations of beam-sampling for iHMMs     
(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).

• Applied to unsupervised learning of part-of-speech tags 
from Newswire text (10 million word sequences).

• Promising results; open source code available for beam 
sampling iHMM:   http://mloss.org/software/view/205/

35
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Part III: 
iHMMs with clustered states

• We would like HMM models that can 
automatically group or cluster states. 

• States within a group are more likely to 
transition to other states within the same group.

• This implies a block-diagonal transition matrix.

36
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The Block-Diagonal iHMM
(Stepleton, Ghahramani, Gordon & Lee, 2009)
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Stepleton, Ghahramani, Gordon, Lee
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Figure 1: Graphical model depictions of (a) the IHMM as described in (Teh et al., 2006) and (b) the BD-IHMM.

ζ = 1 γ = 10
α0 = 10 ξ = 10

ζ = 1 γ = 50
α0 = 10 ξ = 10

ζ = 5 γ = 10
α0 = 10 ξ = 10

ζ = 1 γ = 10
α0 = 1 ξ = 1

ζ = 10 γ = 10
α0 = 1000 ξ = 10

Figure 2: Truncated Markov transition matrices (right stochastic) sampled from the BD-IHMM prior with various
fixed hyperparameter values; highlighted hyperparameters yield the chief observable difference from the leftmost
matrix. The second matrix has more states; the third more blocks; the fourth stronger transitions between
blocks, and the fifth decreased variability in transition probabilities.

ξ is a non-negative hyperparameter controlling prior
bias for within-block transitions. Setting ξ = 0 yields
the original IHMM, while giving it larger values makes
transitions between different blocks increasingly im-
probable. Figure 3 depicts the generation of transition
probabilities πm described by Equation 4 graphically,
while Figure 2 shows some π transition probability ma-
trices sampled from truncated (finite) versions of the
BD-IHMM for fixed γ, α0, ζ, and ξ hyperparameters.

3 INFERENCE

Our inference strategy for the BD-IHMM elaborates
on the “direct assignment” method for HDPs pre-
sented in (Teh et al., 2006). Broadly, the technique
may be characterized as a Gibbs sampling procedure
that iterates over draws from posteriors for observation
assignments to hidden states v, the shared transition
probabilities prior β, hidden state block assignments
z, and the hyperparameters ζ, γ, α0, and ξ.

3.1 HIDDEN STATE ASSIGNMENTS

The direct assignment sampler for IHMM inference
samples assignments of observations to hidden states
v by integrating the per-state transition probabilities
πm out of the conditional distribution of v while condi-
tioning on an instantiated sample of β. Since the BD-
IHMM specifies sums over infinitely large partitions of

β to compute the β∗m, we employ a high-fidelity ap-
proximation via truncating β once its sum becomes
very close to 1, as proposed in (Ishwaran & James,
2002). With these steps, the posterior for a given vt

hidden state assignment invokes a truncated analog to
the familiar Chinese Restaurant process for Dirichlet
process inference twice, once to account for the transi-
tion to state vt, and once to account for the transition
to the next state:

P (vt = m | v\t,β,z,θ, yt, α0, ξ) ∝

p(yt | θm)
(
cvt−1m + α0β

∗
vt−1m

)

·

(
cmvt+1 + α0β

∗
mvt+1

+ δ(vt−1 =m)δ(m=vt+1)

)

cm· + α0 + δ(vt−1 =m)
, (5)

where cmn is the count of inferred transitions between
hidden states m and n in v\t, and the · index in cm· ex-
pands that term to

∑M
n=1 cmn. The delta functions in-

crement the transition counts in cases where self tran-
sitions are considered. Note: for simplicity of notation,
we will reuse cmn for the count of m → n transitions
throughout v in all forthcoming expressions.

When H is conjugate to P (yt | θm), explicit instantia-
tion of the θm emission model parameters is not neces-
sary. For brevity, this paper omits further discussion
of the emission model inference, which is no different
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BD-iHMM finding sub-behaviours in 
video gestures (Nintendo Wii)
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The Block Diagonal Infinite Hidden Markov Model
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(a) (b) (c)

Figure 5: Test-set log probabilities for the 100 syn-
thetic datasets for models learned by (a) the BD-
IHMM and (b) the IHMM; these were not significantly
different for this task (two sample t-test, p = 0.8).
In (c), adjusted Rand index scores comparing sub-
behavior labels inferred for the training data with
ground truth (c.f. Fig. 4(d)); over half have scores
greater than 0.95. Scores of 0 typically correspond to
complete undersegmentations, i.e. all data associated
with just one cluster.

Well after sufficient Gibbs sampling iterations for both
models to converge, we simply stopped the inference
and selected the last-sampled models for evaluation.
We “froze” these models by computing the maximum
likelihood transition probabilities and emission model
parameters from these draws. We then applied stan-
dard HMM techniques to these to compute the like-
lihood of test-set process data, conditioned on the
restriction that inferred trajectories could not visit
states that were not visited in the inferred training-
set trajectories. IHMM evaluation in (Beal et al.,
2002) is more elaborate: it allows the IHMM to con-
tinue learning about new data encountered during test-
ing. We chose our simpler scheme because we con-
sider it adequate to reveal whether both models have
learned useful dynamics, and because our approach fa-
cilitates rapid evaluation on many randomly-generated
datasets. Figure 5 shows that, overall, both the BD-
IHMM and the IHMM are able to model the dynam-
ics of this data equally well. Nevertheless, as shown in
Figure 4(b), the IHMM could be “tricked” into conflat-
ing states belonging to separate sub-behaviors, while
the BD-IHMM inferred the proper structure.

Given the state labels v1, . . . , vT inferred for sequences,
we can assign block labels to each observation as
zv1 , . . . , zvT . If each block corresponds to a different
“sub-behavior” in the generative process, this new la-
beling is an inferred classification or partitioning of the
data by the behavior that created it. The partitions
may be compared with the true pattern of behaviors
known to generate the data. We employ the adjusted
Rand index, a partition comparing technique, in this
task (Hubert & Arabie, 1985). Numerous index scores
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Figure 6: (a) Selected downscaled video frames for
(top to bottom) batting, boxing, pitching and tennis
swing gestures. (b) First three dimensions of video
frames’ PCA projections, colored by gesture type.
(c) Sequences of sub-behaviors executed in one set of
training data: inferred by one of the model runs (red
line) and ground truth (background shading). Each
sub-behavior actually comprises numerous video clips
of the same gesture.

near 1 in Figure 5 indicate frequent close matches be-
tween the inferred classification and ground truth.

4.2 VIDEO GESTURE CLASSIFICATION

We collected multiple video clips of a person execut-
ing four different gestures for a motion-activated video
game (Figure 6). After downscaling the color video
frames to 21× 19 pixels, we projected the frames onto
their first four principal components to create data for
the IHMM and BD-IHMM algorithms.

For inference, parameters were similar to the artifi-
cial data experiment, except here the emission models
were 4-D spherical Gaussians (σ = 0.275). We re-
peated a 9-way cross-validation scheme three times to
collect results over multiple trials; training sets con-
tained around 6,000 observations. Subjecting these
results to the same analysis as the artificial data re-
veals similar compared test-set likelihoods and favor-
able training-set sub-behavior labeling performance
(Figure 7). Both models allocated around 45 hidden
states to describe the training data (combined mean:
44.5, σ = 5.0). We note that since both the BD-IHMM
and the IHMM use multiple states to describe each ges-
ture, inferred hidden state trajectories do not usefully
identify separate sub-behaviors in the data: adjusted
Rand indices comparing the IHMM’s inferred trajec-
tory labeling to ground truth sub-behavior labeling are
poor (µ = 0.28, σ = 0.036).
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Part IV

• Hidden Markov models represent the entire 
history of a sequence using a single state 
variable st

 
• This seems restrictive...

• It seems more natural to allow many hidden 
state variables, a “distributed representation” 
of state.

• …the Factorial Hidden Markov Model
Friday, 16 July 2010



Factorial HMMs

• Factorial HMMs (Ghahramani and Jordan, 1997)
• A kind of dynamic Bayesian network.
• Inference using variational methods or sampling.
• Have been used in a variety of applications (e.g. condition 
monitoring, biological sequences, speech recognition).

Friday, 16 July 2010



From factorial HMMs to 
infinite factorial HMMs?

• A non-parametric version where the number of chains is unbounded?
 
• In infinite factorial HMM (ifHMM) each chain is binary (van Gael, Teh, 
and Ghahramani, 2008). 

• Based on the Markov extension of the Indian Buffet Process (IBP).
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Bars-in-time data
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Bars-in-time data
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ifHMM Toy Experiment: 
Bars-in-time

Data

Ground 
truth

Inferred
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ifHMM Experiment: Bars-in-time
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separating speech audio of multiple speakers in time

Friday, 16 July 2010



Friday, 16 July 2010



The Big Picture
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Summary
• Bayesian methods provide a flexible framework for modelling.

• HMMs can be learned using variational Bayesian methods. This 
should always be preferable to EM.

• iHMMs provide a non-parametric sequence model where the number 
of states is not bounded a priori. 

• Beam sampling provides an efficient exact dynamic programming-
based MCMC method for iHMMs.

• Block-Diagional iHMMs learn to cluster states into sub-behaviours.

• ifHMMs extend iHMMs to have multiple state variables in parallel.

• Future directions: new models, fast algorithms, and other 
compelling applications.

Friday, 16 July 2010



References
Beal, M.J. (2003) Variational Algorithms for Approximate Bayesian Inference. PhD Thesis. University College 
London, UK. 

Beal, M.J., Ghahramani, Z. and Rasmussen, C.E. (2002) The infinite hidden Markov model. Advances in Neural 
Information Processing Systems 14:577–585. Cambridge, MA: MIT Press. 

Bratieres, S., van Gael, J., Vlachos, A., and Ghahramani, Z. (2010) Scaling the iHMM: Parallelization versus 
Hadoop. International Workshop on Scalable Machine Learning and Applications (SMLA-10). 

Ghahramani, Z. and Jordan, M.I. (1997) Factorial Hidden Markov Models. Machine Learning, 29:  245–273.

Griffiths, T.L., and Ghahramani, Z. (2006) Infinite Latent Feature Models and the Indian Buffet Process. In 
Advances in Neural Information Processing Systems 18:475–482. Cambridge, MA: MIT Press.

MacKay, D.J.C. (1997) Ensemble learning for hidden Markov models. Technical Report.

Stepleton, T., Ghahramani, Z., Gordon, G., and Lee, T.-S. (2009) The Block Diagonal Infinite Hidden Markov 
Model. AISTATS 2009.

Teh, Y.W., Jordan, M.I., Beal, M.J. and Blei, D.M. (2006) Hierarchical Dirichlet processes. Journal of the American 
Statistical Association. 101(476):1566-1581. 

van Gael, J., Teh, Y.-W., and Ghahramani, Z. (2009) The Infinite Factorial Hidden Markov Model. In Advances in 
Neural Information Processing Systems 21. Cambridge, MA: MIT Press.

van Gael, J., Saatci, Y., Teh, Y.-W., and Ghahramani, Z. (2008) Beam sampling for the infinite Hidden Markov 
Model. International Conference on Machine Learning (ICML 2008).

van Gael, J., Vlachos, A. and Ghahramani, Z. (2009) The Infinite HMM for Unsupervised POS Tagging. EMNLP 
2009. Singapore.

Friday, 16 July 2010


