
Abstract

Recently I have been intrigued by the reappearance of an
old friend, George Kingsley Zipf, in a number of not
entirely expected places. The law named for him is
ubiquitous, but Zipf did not actually discover the law so
much as provide a plausible explanation. Others have
proposed modifications to Zipf’s Law, and closer
examination uncovers systematic deviations from its
normative form. We demonstrate how Zipf’s analysis can
be extended to include some of these phenomena.

1. Intr oduction and Motivation

In this paper we wish to revisit Zipf’s study of the
relationship between rank and frequency of various
linguistic and social units and constructions. The paper
arises out of observations in Natural Language Learning
experiments of deviations from the received version of
Zipf ’s Law. As it may not be immediately obvious why
this relationship is of significance in NLL, we very
briefly mention some of the places where the relationship
affects research in our field, and which we feel could
usefully be further explored.

1.1  Quantitative Linguistics

The field of which Zipf was the pioneer is discovering
lots of interesting empirical laws, but how much has it
advanced in explanation or application (Köhler,1991)?

1.2  Statistical Learning Methods

Zipf ’s Law tells us how much text we have to look at
and how precise our statistics have to be to achieve what
level of expected error. (Finch, 1993; Powers, 1996). For
example, the most frequent 150 words typically account
for around half the words of a corpus, although this figure
varies significantly with the size of the corpus, the size of
the lexicon, the genre, register and medium of
communication and the linguistic complexity of the text
— and this is one of the phenomena we wish to start to
examine in this paper. Zipf’s Law is also closely related
to the Good-Turing smoothing technique, and a better
law could lead to better smoothing (Samuelsson, 1996).
Note that Samuelsson showed that Zipf’s Law implies a
smoothing function slightly different from Good-Turing.

1.3  Semantics and Information Retrieval

Zipf ’s Law provides a base-line model for expected
occurence of target terms and the answers to certain
questions may provide considerable information about
its role in the corpus (Steele,1998): What does it mean to
ask if a word is significant in a corpus, beyond mere
occurence or relative probability? What is the range of
the semantic influence of a word in a corpus? What does
the pattern of occurences contribute to our assessment of
its relevance in the corpus?

1.4  Parser Evaluation

Zipf ’s Law provides a basis for evaluating parsers and
taggers (Entwisle and Powers, 1998). Again we
summarize the potential role in the form of a series of
questions: How does a language model developed on one
corpus transfer to another? How do we translate
performance estimates on a few test corpora to estimates
for the language as a whole? How do differences in
register, genre and medium affect the utility of a system,
and how do we compensate for these differences?

1.5  Computational Psycholinguistics

Zipf ’s Law provides a distributional foundation for
models of the language learner’s exposure to segments,
words and constructs, and permits evaluation of learning
models (Brent, 1997). It also provides a basis for
evaluation of models of linguistic and cognitive access
and storage models (Segui, Mehler, Frauenfelder and
Morton, 1982). Whilst qualitative explanations and
evaluations have been given on the basis of an
assumption of the general relationship, a more precise
account will lead to more quantitative models.

Whilst the law’s qualitative or coarsely quantitative
roles across these areas may seem rather fuzzy, and it
stretches the imagination to see how a more precise
characterization of the law could improve the
performance in these applications and models, we note
that the relationships, particularly from a Psycho-
linguistic point of view, demonstrate that the law is
relevant to several aspects of our field, and that
explanation and understanding of the law is an
intrinsically valuable scientific objective.
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2. Zipf ’s Principle of Least Effort

Zipf ’s major work on this subject explores a theory based
on a competitive process balancing the minimization of
the effort of both speaker and hearer. He uses an analogy
in which words are regarded as tools, which are so
constructed and arranged as to be able to achieve the
communication task as efficiently as possible. Note that
this culmination of his research into this relationship
coincided with the publication of Shannon’s proposals in
information theory, and we will seek to make the
connections clear shortly.

Zipf considered that the speaker had to build a
continuous stream of specified products, that is an
ongoing stream of utterances conveying specified
meanings, in such a way as to minimize his effort as
speaker consistent with effective communication to the
hearer, her task being simplified as the relationship
between utterances and meanings approached one to one:
the work involved in producing a construction consists of
the work involved in fetching the tool, which is directly
in proportion to the cost of fetching the tool and includes
both the mass of the tool,m, and the distance,d, that it
needs to be fetched, given increasing either increases the
effort required. Mass corresponds to length in Zipf’s
model, and distance to access time. Fequency, f, and
work, w, must also be directly related, so:w = f * m * d,
assuming direct proportionality to work in each case.
Also the age of the tool (word) and number of different
uses (meanings) vary directly with frequency.

2.1  Access Method

We now consider what Zipf called the “close packing”
of our tools. Zipf in fact considered only one model
which fitted the empirical facts, but we will consider
more in order to explore to what extent the law really
does correspond to optimality: What is the optimum
access time for a set of N tools? In computer science, the
optimum organization structures which we typically
think of our hash tables and trees, with o(1) and o(logN)
access times respectively. The former assumes that
encoding of arbitrary length words is done in the same
amount of time, and thus implies both a limit on the
length of words and suboptimality of this hash coding
scheme since best case and worst case are the same (in
machine architecture terms, the machine uses fixed
length words and is synchronous and cycle limited, and
this fixed length must be at least o(logN) in order to
permit full addressability). The tree access technique
makes similar assumptions except that length
independence may be relaxed (in machine architectures,
the access would be pipelined or serialized so that length
of the word and depth of storage add without increasing
the order).

The theoretical o(1) and o(logN) access times which
we are familiar with in computer science are however not
physically sustainable (Powers,1995). Thus encoding
process for hashing also takes at least o(logN) time given
a limitation on the degree (fanin/fanout) of the logic
elements or neurons (which turns it into a tree anyway).
Worse still, as we seek to pack neurons into an n-
dimensional space the speed of propogation limits our
access time to o(N1/n) and our optimal tree is not
practically achievable (this can be hidden in the cycle
time, which then defines an upper limit for N).

Thus our class of optimal solutions is limited to the set
of o(N1/n) solutions wheren is 3, 2 or 1, which
correspond to volumetric, areal and linear constraints
respectively. Hence our access time or storage depth for
a word of rankr, dr is related byw/mr = fr * dr = fr * r 1/n.
(Note that we simplify equations for the moment by
leaving units and constants.)

The three dimensional solution clearly leads to the
most efficient packing, withn = 3, but Zipf’s law seems
to corresponds to linear packing, withn = 1. Does this
mean that optimality is not reached?

We answer this question in two parts: we look at
information theory as a measure of efficiency, and we
consider the physical constraints further. But first we
look at how we move from rank to a more natural
measure. The rank of a word type represents the number
of word types of greater frequency — our conventional
definition of the most frequent word as having rank 1 is
slightly defective when ties are taken into consideration,
and calling this rank 0 would lead to a more consistent
definition. Thus sometimes a constant 1 needs to be
added or subtracted in our formulae to allow for this. The
rank associated with a particular frequency, rf, is thus the
sum of the numbers of words,nf, of greater frequency,
andrf may thus be approximated by the integral ofnf.
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Figure 1: Error approximating series by integral
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2.2  Error Estimates

In fact, approximating a monotonic series by an
integral leads to an error which can be characterized as
being slightly more than half of the first term of the series
(as illustrated in Figure 1), or alternatively as representing
an error of slightly under a half in the index.1 Zipf’s law
for rank is thus approximated either byr = 1/fr + 0.64/fr

2

given that we use Zipfs law for number asnf = 1/fr
2 or by

r = 1/fr if we use nf = 1/(fr+0.43)2. Figure 2 illustrates the
general inverse and inverse square laws, where we plot
rank and number against frequency both for individual
frequencies (ragged plots near gradient -1 and -2 resp.)
and aggregated frequencies (step function and piecewise
linear curves near gradient -1). The aggregation was by
powers of two (n' = 2|logn1| ) as suggested by the scale.
Note that we see the integrating effect not only for rank
but for aggregated number.

These approximations may be used to estimate stepsize
and expected error as indicated in Figure 3. The centre
line is Zipf’s law for rank based on the highest frequency
(the word ‘the’ occurs 1642 times in “Alice in
Wonderland”) and the outermost pair of curves are based
on on the highest and lowest ranks associated with the
frequency 1, namely 1486 and 2620, plus or minus the
maximum error. Note that the difference between these

1. This characterization of the error, closely related to a formulation
due to Euler (Stanaitis, 1967), is actually considerably more accu-
rate than that used by Zipf, and may be verified graphically from
Figure 1 where the inscribed step function represents the sum
whose area is underestimated by the integral of the continuous
curve. The circumscribed step function represents the sum dis-
placed by 1, corresponding to omission of the first term, f(1). The
error is not only bounded above by the sum of the areas enclosed
between the two stepfunctions, which is equal to the value of the
first term, but it can be see to be bounded even more closely below
by the chord function which excludes half this difference, e(1).
Thus f(1)/2 < e(1) < f(1). SinceΣn-2 converges toπ2/6 ~ 1.64, we
have that e(1) ~ 0.64. Alternatively we can useΣ(n+0.43)-2 ~ 1.
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ranks for frequency 1 (plus one) gives the number of
words of frequency 1. This number, n1, sets the maxima
of the aggregated and unaggregated number curves
(2|logn1| andn1resp.) that we saw in Figure 2. The number
nf at any given frequencyf is represented as the stepsize,
and the number of words that would have been expected
to occur with this frequency is assumed to be of this order.

The error bound functions may easily be inverted to
allow the more conventional plotting of frequency (and
error estimates) as a function of rank, as in Figure 4. Here
f(x) represents half the estimated frequency based on the
highest frequency, and f0(x) and f1(x) represent those
based directly on the upper and lower bounds on
frequency 1. In this case we we use error e(1) = 0.64 but
do not allow for error in the frequency 1 ranks themselves.

Note that Zipf associates the ‘top-downward
concavity’ with ‘informal colloquial speech’ (1949, p82),
an association which had been recognized by other
researchers as early as 1936. The effect ‘is not found in
more formal material’ and is attributed by Zipf to an
expansion of the closed class vocabulary to include the
personal pronouns (1949, p122). Both the phenomenon
and the role of closed class words are of interest to us here.

 Figure 3. Actual and expected range of rank vs freq

1

10

100

1000

1 10 100 1000

rank vs freq with number bounds

"alice.rankp"
2620/0.64*(1/x-0.36/sqr(x))
1486/1.64*(1/x+0.64/sqr(x))

1642/x

rank

freq

 Figure 4. Actual and expected range of freq vs rank

1

10

100

1000

1 10 100 1000

actual and predicted freq range vs rank: f(x)=1486:1642:2620/x/2

"alice.rankp"
f(x)+sqrt(sqr(f(x))+2*0.64*f(x))
f(x)+sqrt(sqr(f(x))-2*0.64*f(x))

f1(x)+sqrt(sqr(f1(x))+2*0.64*f1(x))
f0(x)+sqrt(sqr(f0(x))-2*0.64*f0(x))

rank

freq

153Powers Applications and Explanations of Zipf's Law



2.3  Information Theory

Zipf ’s book onHuman Behaviour and the Principle of
Least Effort and Shannon’s book onThe Mathematical
Theory of Communication were both published in 1949,
and were developed totally independently, so it is
interesting to look at how their concepts of efficiency
interrelate. Interesting Crystal finds Zipf’s explanations
unsatisfactory and appeals to “a more conventional
explanation in terms of probability theory” (1987, p87),
by which he presumably means information theory, but
he cites no literature in support of this claim.

Let us consider the probability distribution defined by
dividing the frequency of each word by the length of our
corpus,pr = fr /L (possibly taken as a limit as our corpus
increases indefinitely). An assumption that the lexicon
can increase without bound is inconsistent with Zipf’s
Laws prediction thatpr = C/r since summing over the
distribution gives a non-convergent series, violating the
constraint that the probabilities must sum to 1. Some
prefer to hold onto this assumption and to seek a faster
converging probability distribution for which the series
converges to 1 (Brent, 1997). Such series include 1/r2,
1/r.log2r, 1/r.log r.log2log r, ... all of which converge,
whilst the series 1/r, 1/r.logr, 1/r.log r.log logr, ...all fail
to converge.

Interestingly, the terms of both sequences of series
approach those of the seriesΣ 2-L*( r) (where L*(x-1) is
defined as logc + log x + log log x + ...) which does
converge and is optimal in the sense that any monotonic
decreasing distribution which satisfies our constraint
must equal or exceed L*(x)-2k*(x) infinitely often
(Rissanen, 1989, p35), where k*(x) is the number of
positive log terms in L*(x) excluding the constant. Note
that the integralsfr om r (upto infinity) of the convergent
series are 1/r, 1/log r, 1/log log r, ... whilst for the
divergent series the integralsupto r are log r, log log r, ...
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 Figure 5. Comparison of convering series with 1/x

Now the information corresponding to probabilitypr is
Ir = log pr. For pr = 1/r, optimal encoding of the
information should take logr bits, and must at least
specify the rankr which requires logr bits too, but a
sequence of such codes could not be decoded. Adding a
boolean ‘finished’ flag after each bit doubles the length,
corresponding to squaring the probability, and allows
decoding and convergence — which follows as soon as
each code is a leaf in the decoding tree. Another way of
delimiting is to specify a length using a more primitive
scheme, then allowing minimum length encoding of the
actual rank. In the extreme we specify lengths recursively
till we flag we reach a length of 1, when we use our
boolean flag — this corresponds to the near optimal
L*( r), however for the range of lexicon size we need, one
level of length encoding, 1/r.log2r, is sufficient and in
Figures 5 and 6 the corresponding curves are scarcely
separable. In Figure 5 we see that for the first 100 words
this applies to 1/r2 too.

As discussed above, deviations from Zipf’s Law are
known, and the logscale which Zipf used actually hid
considerable deviations for high values of either rank or
frequency (and can amplify deviations for low values).
We therefore now show the reciprocal of frequency
against rank using a linear scale, and this in fact
corresponds to a particular definition of the average
interval between words. We show how this looks in
Figure 7 for three different definitions of the average
interval: ‘interval’ corresponding to dividing the corpus
length by frequency (valid if imagine that the following
text segments of this size have the same structure);
‘initival’ corresponding to treating the start of the corpus
as the first reference point (valid if the interval to the first
occurence is a good predictor of the interval between
occurences); and ‘intraval’ corresponding to considering
only the f -1 intervals between actual successive
occurences. Note that the ‘interval’ which corresponds
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 Figure 6. Comparison of convering series with 1/x

154Powers Applications and Explanations of Zipf's Law



directly to a scaled reciprocal of the rank, is guaranteed to
have a step shape as many words have the same
frequency. This discretization is avoided by the other
definitions. In Figure 7 we show these as a normalized
intervals (divided by the corpus size, 26685) against
normalized rank (divided by the lexicon size, 2620)
along with lines corresponding to Zipf’s Law,
Mandelbrot’s Modification (proposing an exponent of
1.05), the best fit power for our small test corpus (1.2)
and the quadratic model of Brent (1997).

There are many details of Zipf’s theory which we are
unable to go into in the confines of this paper, but at this
point we need to note two things. First, that Zipf claimed
that claimed the reciprocal law applies only to an
optimum sample size corresponding to a single cycle for
the least frequent word, such that the maximum
frequency and the maximum rank were equal to the
intercepts of the line of best fit of gradient -1 (least
squares in log scale). Of course as the corpus grows, new
words of frequency 1 enter, so his principle is to select the
size which gives gradient closest to -1 across a large
number of samples of the corpus (which should be
consistent as to genre, register, age of speaker, etc.) For
most published literature this should correspond to
around 10000 words (thus this is the size of the usual
active lexicon) while for children around the time of
starting school it is around 2000 words. Our corpus is
around 2.5 times his optimum for literature, and as we are
using Alice in Wonderland which is supposedly a
children’s book about a child, and is of informal
character, perhaps he would probably have suggested
using even smaller sample sizes. However, we are not
content to characterize samples of an optimum size, and
we are aiming to determine how the law should be
adjusted to take into account sample size.

The second deviation from Zipf’s practice is implicit in
the mechanism for determining the optimum sample size
as just explained: The correct line to draw is a line of best
fit, minimizing the least squares error in the prediction of
the log of frequency from the log of rank. This means are
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 Figure 7. Comparison of interval definitions and laws

line should pass through the middle of the steps in
Figure7 (as in Figure 2). This may also be viewed in
another way. The midpoint of a step may be viewed as
showing close to its correct frequency and rank, whilst
words which should not occur an integral number of
times in a sample of the selected size will be rounded to
an integral frequency. They will necessarily occur more
or less than the expected number of times. This problem
does not apply to our alternate definitions of average
intervals. Thus for ‘intervals’ we should fit the midpoint
of the intervals, and in particular the midpoint of the
frequency 1 step, for ‘initivals’ we have the full range of
the corpus available and should fit the high point of the
frequency 1 step, and for ‘intravals’ we should fit the low
point since frequency 1 does not define an intraval and
the value is arbritrarily set to a limit of 1.

Figures 8 and 9 show fits to these different points on
the top step, and allow comparison with the convergent
information theoretic functions we have discussed. In
Figure 8c there is an evident log-squared bias.
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From Figure 9 it will be observed that our new
definitions of average interval have a totally different
characteristic from the old. Not only have we eliminated
the ‘steps’, but the resulting functions are clearly far from
linear, and from the slowly convergent log-based series.
Clearly for words that occur locally rather than globally
in the corpus, these methods progressively add a bias
relating to the location of a cluster of occurences — and
better reflect the frequenct of clusters. This is something
else Zipf has considered: for words of a particular
average frequency (and thus interval), the number of
intervals of a particular size also varies inversely with
that interval size (1949, p42). In Zipf’s model this results
from spreading the workload away from costly words.
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Whilst it is possible to fit higher order polynomials and
exponentials to to these curves, the fits are not good. In
Figure 9c we have fitted a 6th order polynomial which is
indistinguishable in the range from an exponential
formulated in terms of the probability that a word does
not occur. We do not see this as something where an
explanation as a single distribution is appropriate, and
later we view these as a joint distribution for open and
closed class words, and in Figure 9c we show that the
bends in the curves look more like transitions between
two distinct distributions obeying different parameter-
izations of some form of Zipf’s law.

2.4  Psychological Predictions

If we believe Zipf’s law in its standard form, and scale
frequencies to probabilities for a finite lexicon, then
information theory suggest that the length of words
should look like the log of frequency, and the access time
for words should follow the log of word frequency.
Assuming that the lexicon is unbounded, then
information theory suggest that the length of words
should be L(x) or, less optimally, logx + 2 log log x.

Zipf went further and predicted that the older words
would be the more frequent, both in an etymological and
a psycholinguistic sense, and performed experiments to
demonstrate the law in relation to the etymology of
English, as well as performing some analyses of
children’s speech which were also consistent with his
model. However, his experiments on length did not
quantiatively demonstrate what relationship was
achieved, and he was expecting a negative power
relationship again. Moreover, he did not perform any
experiments to check the validity that access time would
reflect an inverse relationship, and expected that length
(mr) and access time (dr) would be proportional tor0.5.

Studies of latencies in various linguistics task have,
however, been extensively studied by psychologists, and
although the interpretation of the results is controversial,
and the results are more qualitative than quantitative,
considerable evidence exists to support a logarithmic
access time, and have been the basis for one of the most
influential models of word recognition, the Logogen
model (Morton, 1969). There is also Event-Related
Potential evidence from EEG studies, but these results
are even less precise and we ignore them here (although
we have undertaken some ERP experiments ourselves
and hope to further elucidate certain factors in this way).

Looking more closely at the experimental data, we
find, just as with the frequency data, that there are strong
contextual effects (Becker, 1979) which tend to be
additive, particularly for lew-frequency words. An
additional confusion factor is that subjective measures of
familiarity which actually can better predict access time
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than more objective frequency measures (Gernsbacher,
1984). As Zipf also knew, the number of distinct also
plays a role, and Zipf himself found that the number of
meanings decreased with the square root of frequency
(1949, p75). Other reported confusion factors include
concreteness, level of education, age, age of acquisition
and word length. Also there is a correlation between
word frequency and the signal to noise ratio which may
be tolerated by a word, as well as the fixation time in
reading a word. The mode of presentation and the method
of testing may also influence the relationships found, as
can even such factors as stress pattern and syntactic role.
Thus the role of frequency as a primary determiner of
access time is highly controversial although the
relationship itself is well accepted (Balota & Chumbley,
1984 & 1990; Monsell, Doyle & Haggard, 1989).

As we can see from Figure 10, the length data does
support a logarithmic relationship, notwithstanding that a
log-squared bias was observed in Figure 8. However the
square root of the logarithm is best for this data.
Nevertheless the information theoretic optimum is
approximated for this corpus and we would further
predict a similar function for the access time for words.

Although the age of acquisition and length both show
stronger correlation with latency than frequency in
naming tasks, and this has been cited as evidence against
word frequency having a significant effect on access time
(Morrison, Ellis and Quinlan, 1992), this observation
supports the predictions we made on the basis of Zipf’s
Law and Information Theory. Even if the age of
acquisition and phoneme length fully determine access
time, the fact of correlation between frequency and
latency is not disturbed, and we can hypothesize that high
frequency leads to early and frequent exposure to, and
thus learning of, a word; and furthermore, that the early
learning, in combination with constant refreshment,
maintains the word at a relatively greater level of
accessibility than less frequent words. Similarly, we
predicted a strong correlation between length and latency

 Figure 10. Wordlength versus Frequency
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on the basis that the logarithmic relationship is required
for optimality in each case. The results do however seem
to contradict Zipf’s prediction that length,m, and access
time, d, would be proportional tof -0.5, although it must
be emphasized that the correlations are far from perfect
and the precise trends cannot be distinguished to any
great degree of accuracy. Our own data in Firure 10
suggests that the relation is actually log0.5f, and the curve
for f -0.5 moves right away from the data at both extremes.
However we have no accurate information for access
time and we will simply note that both length and access
time have a generally logarithmic relationship with
frequency, and that L(1/f ) is also a better fit thanf -0.5.

Nonetheless, this has implications for the principle of
least effort in that the Zipf’s relationship for work,,
w = f * m * d = f / log2f = 1/r.log2r, is not constant, and
indeed Information Theory says we should actually do
less work for more frequent items. Moreover, this
relationship for work now obeys a law consistent with
near optimality in an unbounded lexicon model. We
could moreover replace Zipf’s law by f = 1/r.log2r,
consistent with the improved empirical fit of Figure 8c.

This gives us a new relation for the number of words
around each frequency. For Zipf’s Law, f = c/r gave usn
= c/f 2 = r/f . For our new version,f = c/r.log2r gives usn
= log r/bf (where our new constant,b, depends on the
base of our log and is given byb = 2 log e). Thus for
Zipf ’s Law, the number expected for each frequency is
the corresponding fraction of the number of words with
higher frequency, but our new numbers grow more
slowly, the frequency specifying a fraction of the log of
the number of words with higher frequency. Substituing
an overestimate for the rank using Zipf’s Law, in
Figure11 we approximate the number at frequencyf by
n = log(c/f)/bf (which is a bit steeper than the correct
inverse would be) and is at least as good a fit asc/f 2 and
indeed better reflects the distribution of the sparse ranks
where the expected number of words for a frequency is
less than one. The corresponding optimal length
function, again with rank overestimated using Zipf’s law
(and hence also too steep), is shown in Figure 10.
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Figure 11. Approximation to numbers given frequency
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From the perspective of our own research in Natural
Language Learning, the most significant results from
these psychological explorations of access time are those
which suggest that open class words show a more
significant effect than closed class words, and have
distinct roles and mechanisms in the early stages of
morphological processing (Segui, Mehler, Frauenfelder
and Morton, 1982; Matthei and Kean, 1989).

3. Corpus Characteristics and Sample Size

One of Zipf’s claims was that a given text had particular
characteristics which included a characteristic optimum
sample size and lexicon size. He chose the optimum
sample size to be the one with the best fit to Zipf’s Law,
and this implicitly specified a lexicon. However, as the
sample is increased above that point, new word types
continue to enter the lexicon. He furthermore notes that
informal colloquial speech gets a hump in the first 150
words, one which has generally been associated with
increased usage of the personal pronouns. We further
noted that there is evidence (Matthei & Kean, 1989;
Segui et al., 1982) that open and closed class words are
treated differently, and it could also be assumed that there
is a primary subject, and hence lexicon, for any specific
work, as well as secondary or incidental topics. As an
average of independent topics, we might expect the law
to re-emerge, but the closed class (including generics)
cannot increase in size as the lexicon does.

One of our motivations for undertaking this study was
the observation during our language learning
experiments that as corpus size increased, Zipf’s Law
tended to be increasingly invalidated, with the curvature
increasing consistent with a move to a continually higher
exponents. While it would be predicted for the highest
ranks of each step to exhibit a quadratic component, due
to the size of the step reflecting the number of words with
that frequency, the tendency affected the lowest and
median ranks as well.

To investigate this analytically, we assume that we
have two samples each of which has a lexicon of sizeN
which includes a common vocabulary ofpN, and that
each sample obeys Zipf’s Law. We further assume that
the common vocabulary includes the closed class words,
and more generally the most frequent words in the
language and relating to the topic of the corpus. If thepN
words were the most frequent words of the individual
samples, and were exhibiting their characteristic
frequencies, they would exhibit exactly double the
frequency for the same rank, thus retaining the same
slope in a log-log plot. The converse is true for the
remainder of the lexicon: the words will all the same
frequency as in the smaller samples, but their ranks will
have increased in proportion to their distance above the

common set. These word types will thus exhibit a
reduced slope, and there will be a jump and a sudden
discontinuity in slope between the common and the
distinct words as in Figure 12 In general, whereever new
(or displaced) vocabulary enters the picture, there will be
reduced slope — rank will increase without much change
in frequency. Similarly, where disused vocabulary is
displaced, rank will decrease without much change in
frequency, giving rise to increased slope. In fact there is
evidence of a jump and discontinuity which occur at a
rank logarithmic in the size of the lexicon.

In another model, we can imagine replacing a pair of
equally likely synonyms by one member of the pair, and
note that this will double it’s frequency and halve its rank.
This is consistent with Zipf’s Law, although in between
the old and new positions, ranks will increase without an
increase in frequency, and after the old position, ranks
will decrease without a decrease in frequency. This will
produce the kind of bulge Zipf identified with informal
text. Shifting words can thus cause discontinuities too.

At this stage, it may be worth saying a few words about
the corpus used throughout this paper, Alice’s Adventures
in Wonderland (Carroll,1865) is an edited collection of
children’s stories, originally delivered verbally, and
culminating at a Picnic in 1862 when Alice going down
the rabbit hole provided the framework and cast the spell
which eventually led to publication. As a series of
adventures, there are some characters in common, some
of whom recur, but entire vocabularies are limited to a
single chapter. We used the Millennium Fulcrum Edition
2.9, available through the Gutenberg Project, which is
significant since this attribution occurs at the beginning
of the book and affects our analysis.
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Having made the above predictions about the shape of
the curves under both extreme conditions and
incremental change, we then proceeded to an analysis of
Alice produced by taking successive prefixes of the book.
These are shown in Figure 13, where each prefix is twice
the size of its predecessor. Note the discontinuities that
start in our first doubling, where closed class words start
to sift above above the non-recurring words of the title
page, some of which only occur once in the whole
volume. This shift starts in the first order of ranks and is
visible well into the second order of ranks. The dips
which appear and disappear around rank 10 in the larger
segments are due to the competition between the words
‘said’, ‘in’ and ‘i’, and the name ‘Alice’ as the story
alternately focuses on her involvement and scenes
involving other characters, and changes its balance
between narrative, soliloquy, and reported speech. The
beginning of the second order ranks marks the transition
between closed class words and focal words. The first 20
words are:the, and, to, a, she, it, of said, I, Alice, in, you,
was, that, as, her, at, on, all, with, and the remainder of
the first 100 are all closed class words (plus narrative
devices likethink andlooked) or characters — with the
single exception of the wordhead (which is closely
linked to the one character who wasn’t in danger of
losing hers).

Thus in this range we see a number of discontinuities
as words move into and out of the focal range, and two
different slopes corresonding to the closed class and focal
words, and the open class words.

We have carried out a similar and more extensive study
on the Bible in four languages. It also has the character of
sequences of stories focusing on different people and
events, and is also largely and edited version of verbal
accounts. Using multiple versions retains the thematic

Figure 13. Frequency against Rank as corpus doubles in size — Alice’s Adventures in Wonderland
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biases, so that if the artifacts we are observing are
primarily thematic, we should see similar artificacts in
similar places. We should separately be able to see the
effects of language and translation style. Although some
translations are targeted at a more popular level and use
less technical vocabularly, we have selected four
traditional translations three of which use reasonably
contemporary language (the versions are KJV, RSV,
Louis Segond, Elberfelder).

Whereas Alice allowed us to double only 11 times, the
Bible allows us to double 16 times. We have however for
consistency and convenience kept with the smaller Alice
corpus for the graphs shown here (the equivalent of
Figure 13 for each version of the bible is about 1Meg of
PostScript). In Figure 14 we show the results for French
for the last seven samples, this being the one where the
discontinuities were least pronounce. In each case there
were one or two deep drops around rank 10, followed by
a steepening of slope.

4. Conclusions

At this stage, only tentative conclusions can be made
from this preliminary studies, although further
investigations are being undertaken using larger corpora
in multiple languages. Zipf’s theory requires effort to be
constant independent of frequency, however Information
Theory and Psychological experiments both indicate that
this ought not to be the case, and that it in fact decreases
in a way consistent with an optimal strategy for an
unbounded lexicon. We have not been able to establish
the validity of an optimum sample size for a particular
corpus, genre or lexicon, but observe that new words tend
to enter faster than they repeat, as evidenced by the fact
that the number of words of frequency 1 tends to increase
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as the size of sample increase. Given that language is
productive, and an unbounded lexicon model has been
indicated (or at least possible) in each of our experiments,
this trend may well continue indefinitely, although it does
seem to slow as the sample is increased (even though we
increase by doubling).

5. Acknowledgements

All plots were made with GnuPlot and reformatted in
FrameMaker. Aspects of this work were undertaken
while a guest researcher at ENSSAT in Lannion, France
and at the University of Antwerp, Belgium, with support
from IRISA and CLIF respectively.

6. References

Balota D.A. and Chumbley, J.I. (1984) Are Lexical
Decisions a Good Measure of Lexical Access? The Role
of Word Frequency in the Neglected Decision Stage,
J.Exp. Psych: Hum.Perc. & Perf. 10#3:340-357

Balota D.A. and Chumbley, J.I. (1990) Where are the
Effects of Frequency in Visual Word Recognition Tasks?
J. Exp. Psych: General119#2:231-237

Becker, C.A. (1979) Semantic Context and Word Frequency
Effects in Visual Word Recognition,J. Exp. Psychology:
Human Perc. & Perf. 5#2:252-259

Brent, M.R. (1997). Toward a Unified Model of Lexical
Acquisition and Lexical Access. Journal of
Psycholinguistic Research26:363-375.

Carroll, L. (1865). Alice’s Adventures in Wonderland. The
Millennium Fulcrum Edition 2.9, Gutenberg Project.

Crystal, D. (1987). The Cambridge Encycolpedia of
Language, CUP

Entwisle, J. and Powers, D.M.W. (1998). The Present Use
of Statistics in the Evaluation of NLP Parsers.submitted

Finch, S. (1993)Finding Structure in Language.Ph.D
Dissertation, U. Edinburgh

Gernsbacher, M.A. (1984) Resolving 20 years of
Inconsistent Interactions between Lexical Familiarity and
Orthography, Concreteness, and Polysemy. J. Exp.
Psych: General113#2:256-281

Köhler, R. and Rieger, B.B., eds (1991)Contributions to
Quantitative Linguistics, Kluwer

Matthei, E.H. and Kean, M-L. (1989) Postaccess Processes
in the Open vs Closed Class Distinction.Brain and
Language36: 163-180

Monsell, S. Doyle, M.C., and Haggard, P.N. (1989) Effects
of Frequency on Visual Word Recognition Tasks: Where
are they?J. Exp. Psych: General118#1:43-71

Morton, J. (1969) Interaction of information in word
recognition.Psychological Review76:165-178

Powers, D.M.W. (1995). Parallel Unification: Practical
Complexity, Australasian Computer Architecture
Workshop, Adelaide

Powers, D.M.W. (1996). Learning and Application of
Dif ferential Grammars. CoNLL97: ACL/SigNLL
Workshop on Computational Natural Language
Learning, Madrid

Rissanen, J. (1989).Stochastic Complexity in Statistical
Inquiry. Singapore:World Scientific

Samuelsson, C. (1996).Relating Turing’s Formula and
Zipf’s Law, WVLC’96

Segui, J., Mehler, J., Frauenfelder, U. and Morton, J. (1982).
The word frequency effect and lexical access,
Neuropsychologia 20:6 615-627

Shannon, C.E. and Weaver, W. (1949)The Mathematical
Theory of Communication.Urbana: U. Illinois Press

Stanaitis, O.E. (1967).An introduction to sequences, series,
and improper integrals. San Franc:Holden-Day

Steele, R. and Powers, D.M.W. (1998) Evolution and
Evaluation of Document Retrieval Queries.submitted

Zipf, G.K. (1949)Human Behaviour and the Principle of
Least Effort: An Introduction to Human Ecology. AW

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

"bfre.rank10240"
"bfre.rank20480"
"bfre.rank40960"
"bfre.rank81920"

"bfre.rank163840"
"bfre.rank327680"
"bfre.rank655360"

Figure 14. Frequency against Rank as corpus doubles in size — French Bible (Louis Segond)
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