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Abstract 1.3 Semantics and Information Retrieval

Recently | have been intrigued by the reappearance of an  Zipf’s Law provides a base-line model for expected
old friend, Geoge Kingsley Zipf, in a number of not  occurence of tget terms and the answers to certain
entirely expected places. The law named for him is qguestions may provide considerable information about

ubiquitous, but Zipf did not actually discover the law so . . . ;
much as provide a plausible explanation. Others have its role in the corpus (Steele,1998): What does it mean to

proposed modifications to Zigf Law and closer ask if a word is significant in a corpus, beyond mere
examination uncovers systematic deviations from its occurence or relative probability? What is the range of

normative form. W demonstrate how Ziisf analysis can  the semantic influence of a word in a corpus? What does
be extended to include some of these phenomena. the pattern of occurences contribute to our assessment of
its relevance in the corpus?
1. Intr oduction and Motivation 1.4 Parser Evaluation
In this paper we wish to revisit Zijsf study of the
relationship between rank and frequency of variou§a
linguistic and social units and constructions. The papeg
arises out of observations in Natural Language Learnin
experiments of deviations from the received version o

Zipf’'s Law provides a basis for evaluating parsers and
ggers (Entwisle and Powers, 1998). Again we
ummarize the potential role in the form of a series of
ﬁuestions: How does a language model developed on one
o ) X . . corpus transfer to another? How do we translate
Zipt's Law As it may not be immediately obvious why performance estimates on a few test corpora to estimates

Lh'.zﬂreﬁgﬁ?gh'poﬁeogf tsrl]gem:[acagce hm NtIF]Ié' ;'\Ilet.(\)/er{].for the language as a whole? How dofatiénces in
retly lon s places where refationstl egister genre and mediumfatt the utility of a system,

affects research in our field, and which we feel coul and how do we compensate for theséedinces?
usefully be further explored.

1.1 Quantitative Linguistics 1.5 Computational Psycholinguistics
Zipf's Law provides a distributional foundation for
models of the language learf®eexposure to segments,
tWords and constructs, and permits evaluation of learning
models (Brent, 1997). It also provides a basis for
evaluation of models of linguistic and cognitive access
and storage models (Segui, Mehlérauenfelder and
Zipf’s Law tells us how much text we have to look atMorton, 1982). Whilst qualitative explanations and
and how precise our statistics have to be to achieve whataluations have been given on the basis of an
level of expected erro¢Finch, 1993; Powers, 1996). For assumption of the general relationship, a more precise
example, the most frequent 150 words typically accounaiccount will lead to more quantitative models.
for around half the words of a corpus, although this figure Whilst the laws qualitative or coarsely guantitative
varies significantly with the size of the corpus, the size ofoles across these areas may seem rather, fanglyit
the lexicon, the genre, register and medium ofstretches the imagination to see how a more precise
communication and the linguistic complexity of the textcharacterization of the law could improve the
— and this is one of the phenomena we wish to start tperformance in these applications and models, we note
examine in this paperipf’'s Law is also closely related that the relationships, particularly from a Psycho-
to the Good-Tring smoothing technique, and a betterlinguistic point of view demonstrate that the law is
law could lead to better smoothing (Samuelsson, 1996jelevant to several aspects of our field, and that
Note that Samuelsson showed that Zpfaw implies a explanation and understanding of the law is an
smoothing function slightly diérent from Good-Tiring.  intrinsically valuable scientific objective.

The field of which Zipf was the pioneer is discovering
lots of interesting empirical laws, but how much has i
advanced in explanation or applicatittdller,1991)?

1.2 Statistical Learning Methods
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2. Zipf’s Principle of Least Effort The theoretical o(1) and o(logN) access times which
) ) ) ] we are familiar with in computer science are however not
Zipf's major work on this subject explores a theory basedy,y sically sustainable (Powers,1995). Thus encoding
on a competitive process balancing the minimization opqcess for hashing also takes at least o(logN) time given
the efort of both speaker and heardle uses an analogy 4 jimitation on the degree (fanin/fanout) of the logic

in which words are regarded as tools, which are S@iements or neurons (which turns it into a tree anyway).
constructed and arranged as to be able to achieve thg,rse still as we seek to pack neurons into an n-

communication task asfigiently as possible. Note that gimensional space the speed of propogation limits our
this culmination of his research into this relationshipyccess time to oM and our optimal tree is not
coincided with the publication of Shanneproposals in - 5 ctically achievable (this can be hidden in the cycle
information theory and we will seek to make the (e which then defines an upper limit for N).
con_nectlons_clear shortly . Thus our class of optimal solutions is limited to the set
Zipf considered that the speaker had to build gy o(NY™ solutions wheren is 3, 2 or 1, which
continuous stream of specified products, that IS aRqrrespond to volumetric, areal and linear constraints

ongoing stream of utterances conveying specifiedagpectivelyHence our access time or storage depth for
meanings, in such a way as to minimize hi®réfas  , \vord of rank d, is related byv/my = f, *d, = f, * pln

speaker consistent withfe€tive communication to the (Note that we simplify equations for the moment by
hearer her task being simplified as the relationship|eavmg units and constants.)
between utterances and meanings approached one 0 0Néje “three dimensional solution clearly leads to the
the work involved in producing a construction consists ot st eficient packing, witm = 3, but Zipfs law seems
the work involved in fetching the tool, which is directly corresponds to linear packing, with= 1. Does this
in proportion to the cost of fetching the tool and includesyean that optimality is not reached?
both the mass of the toah, and the distancel, that it We answer this question in two parts: we look at
needs to be fetched, given increasing either increases th8srmation theory as a measure ofi@éncy and we
effort required. Mass corresponds to length in &pf .,ngider the physical constraints furthBut first we
model, and distance to access time. FequeR@nd ook at how we move from rank to a more natural
work, w, must also be directly related, so=f*m>*d,  neasyre. The rank of a word type represents the number
assuming direct proportionality to work in each Casepf word types of greater frequency — our conventional
Also the age of the tool (word) and number ofed#nt  yefinition of the most frequent word as having rank 1 is
uses (meanings) vary directly with frequency slightly defective when ties are taken into consideration,
and calling this rank 0 would lead to a more consistent
2.1 Access Method definition. Thus sometimes a constant 1 needs to be
We now consider what Zipf called the “close packing”added or subtracted in our formulae to allow for this. The
of our tools. Zipf in fact considered only one modelrank associated with a particular frequemgys thus the
which fitted the empirical facts, but we will consider sum of the numbers of words;, of greater frequency
more in order to explore to what extent the law reallyandr; may thus be approximated by the integratof

does correspond to optimality: What is the optimum 1 p(x) = 1.0/sqr(X)

access time for_a set of N tools? In computer science, the DNt =(NtOc+L) ) +p(INt(x+1))*(x-int(x)) —
optimum oganization structures which we typically 0.9 p(int(x+1))
think of our hash tables and trees, with o(1) and o(logN}, g p(nt(x)) —

access times respectivelfhe former assumes that P(x)

encoding of arbitrary length words is done in the sam&@-/
amount of time, and thus implies both a limit on the0.6
length of words and suboptimality of this hash codin
scheme since best case and worst case are the same (i
machine architecture terms, the machine uses fixe®4
length words and is synchronous and cycle limited, ang 3
this fixed length must be at least o(logN) in order toO 9

permit full addressability). The tree access technique’

makes similar assumptions except that lengtiP.1 i‘i\

independence may be relaxed (in machine architecturesg e
the access would be pipelined or serialized so thatlengtn * 2 3 4 5 6 7 8 9
of the word and depth of storage add without increasing Figure 1 Error approximating series by integre
the order).
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2.2

In fact, approximating a monotonic series by an
integral leads to an error which can be characterized ag, [
being slightly more than half of the first term of the series g
(asillustrated in Figure 1), or alternatively as representing
an error of slightly under a half in the indJerpf's law
for rank is thus approximated eithertoy 1/, + 0.64f,
given that we use Zipfs law for numbemas 1/, or by
r = 1/f, if we usery = 1/(f,+0.43¥. Figure 2 illustrates the
general inverse and inverse square laws, where we plot
rank and number against frequency both for individual
frequencies (ragged plots near gradient -1 and -2 resp.) 1 ! !
and aggregated frequencies (step function and piecewise
linear curves near gradient -1). The aggregation was by
powers of two i' = 2/°9) as suggested by the scale.
Note that we see the integratindeet not only for rank

Error Estimates

but for aggregated number

These approximations may be used to estimate stepsize |-
and expected error as indicated in Figure 3. The centfgoo
line is Zipf's law for rank based on the highest frequency
(the word ‘the’ occurs 1642 times in “Alice in
Wonderland”) and the outermost pair of curves are basedo0 ¢
on on the highest and lowest ranks associated with the |
frequency 1, namely 1486 and 2620, plus or minus the

rank vs freq with number bounds
T T T T L
"alice.rankp" —
2620/0.64*(1/x-0.36/sqr(x))----
1486/1.64%(1/x+0.64/sqr(X)) - o
1642/x -

rank [

100

10

N a1l ‘\\\
10 100 1000 freq

Figure 3 Actual and expected range of rank \exffi

actual and predicted freq range vs rank: f(x)=1486:1642:2620/x/2

freq T AL T T
5 "alice.rankp" ——
f(x)+sqrt(sqr(f(x))+2*0.64*f(x)) -
f(x)+sqrt(sqr(f(x))-2*0.64*f(x))
fL(x)+sqrt(sqr(f1(x))+2*0.64*f1(x)) -——
fO(x)+sqrt(sqr(f0(x))-2*0.64*f0(x))

maximum errarNote that the diérence between these 0¢ 3
number & rank against individual & intlog grouped f
number for aggregated frequenci&dice.nintinp"— 1 ) ) P
rank for aggregated frequenciéslice.rintlnp" 1 10 100 1000  rank
number for raw frequencie'slice.nrawinp"—
100d rank for raw frequenciealice.rrawlnp" Figure 4 Actual and expected range oédrvs rank
2620/x—
2620/sqr(x) ranks for frequency 1 (plus one) gives the number of
words of frequency 1. This numbey sets the maxima
100 of the aggregated and unaggregated number curves
(2°9%l andn; resp.) that we saw in Figure 2. The number
n; at any given frequendyis represented as the stepsize,
and the number of words that would have been expected
10 to occur with this frequency is assumed to be of this order
The error bound functions may easily be inverted to
allow the more conventional plotting of frequency (and
1 error estimates) as a function of rank, as in Figure 4. Here

f(x) represents half the estimated frequency based on the
highest frequengyand fO(x) and f1(x) represent those
based directly on the upper and lower bounds on

. This characterization of the erraiosely related to a formulation frequency 1. In this case we we use error e(1) = 0.64 but
due to Euler (Stanaitis, 1967), is actually considerably more accuglo not allow for error in the frequency 1 ranks themselves.

rate than that used by Zipf, and may be verified graphically from ; ; “HAn.
Figure 1 where the inscribed step function represents the sum Note that lef associates the top downward

whose area is underestimated by the integral of the continuougoncavity’ with ‘informal colloquial speech’ (1949, p82),
curve. The circumscribed step function represents the sum disan association which had been recognized by other

placed by 1, corresponding to omission of the first term, f(1). Th ; ;
error is not only bounded above by the sum of the areas encIos‘zr(?searcherS as early as 1936. Tlecefis not found in

between the two stepfunctions, which is equal to the value of thénore formal material’ and is attributed by Zipf to an
first term, but it can be see to be bounded even more closely belo@xpansion of the closed class vocabulary to include the

by the chord function which excludes half thisfeliénce, e(1). personal pronouns (1949, p122). Both the phenomenon

Thus f(1)/2 < e(1) < f(1). SincEn? conveges ton%/6 ~ 1.64, we ;
have that e(1) ~ 0.64. Alternatively we can Bge+0.43)2 ~ 1. and the role of closed class words are of interest to us here.

4 16 256 1024 freq
Figure 2 Effect of aggegation of numbers to ran
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2.3 Information Theory Now the information corresponding to probabififyis

I, = log p,. For p, = 1/, optimal encoding of the
information should take log bits, and must at least
specify the rank which requires log bits too, but a
sequence of such codes could not be decoded. Adding a
boolean ‘finished’ flag after each bit doubles the length,
corresponding to squaring the probabijliand allows
a(iiecoding and convgence — which follows as soon as
each code is a leaf in the decoding tree. Another way of
. ) . "delimiting is to specify a length using a more primitive
by which he presumably means information thebut scheme, then allowing minimum length encoding of the

he cites no literature in support of this claim. . .
. e ' actual rank. In the extreme we specify lengths recursively
Let us consider the probability distribution defined by .
till we flag we reach a length of 1, when we use our

dividing the frequency of each word by the length of our, T .
N . 2 boolean flag this corresponds to the near optimal

corpuspy = fr /L_(possmly taken as a.“m't as our corpus L*(r), however for the range of lexicon size we need, one

Increases mdeﬂ_mtely). An as_su_mptlon_ that th_e lex.'corlevel of length encoding erogzr is suficient and in

can increase without bound IS |nconS|st(_ent with ipf Figures 5 and 6 the cor’responc’iing curves are scarcely

Lfaw_s pr_edlct!on thap, = C/r since summing over the separable. In Figure 5 we see that for the first 100 words

distribution gives a non-conygent series, violating the

constraint that the probabilities must sum to 1. Som(tahIS applies to 1f too.

Zipf’s book orHuman Behaviour and the Principle of
Least Effortand Shannos’book onThe Mathematical
Theory of Communicatiowere both published in 1949,
and were developed totally independentbo it is
interesting to look at how their concepts ofiééncy
interrelate. Interesting Crystal finds Zipfexplanations
unsatisfactory and appeals to “a more convention
explanation in terms of probability theory” (1987, p87)

prefer to hold onto this assumption and to seek a faster 4 L(x) = x<=1? 2.865 : (Ig(x) + L(I9(x)))
convepging probability distribution for which_the series 0.33/(x*sqr(Ig(x))) —
conveges to 1 (Brent, 1997). Such series includé, 1/ 2%*(-L(x))
1/r.log?r, 1/rlogr.log?ogr, ... all of which conveye, 064/8(1{?0*
whilst the series t/1f.logr, 1/rlogr.log logr, ...all fail x

to convege.

Interestingly the terms of both sequences of series
approach those of the serB<2 - (" (where L*-1) is
defined as log + log x + log logx + ...) which does
convege and is optimal in the sense that any monotonic
decreasing distribution which satisfies our constraintie-10
must equal or exceed L*(x)-2k*(x) infinitely often
(Rissanen, 1989, p35), where k*(x) is the number of
positive log terms in L*(x) excluding the constant. Note
that the integralf omr (upto infinity) of the conveyent
series are 1/ 1l/logr, 1/log logr, .. whilst for the

10 100 10001e+04le+0He+06le+071e+08
Figure 6 Comparison of convering series with :

divergent series the integralptor are log ylog log ¢ ... As discussed above, deviations from ZipEaw are
1 L(x) = x<=1? 2.865 : (Ig(x) + L(Ig(x))) known, and the logscale which Zipf used actually hid
0.33/(¢sqr(lg(x))) — considerable deviations for high values of either rank or
' 25(-L(X) frequency (and can amplify deviations for low values).
01 0.64/sqr(x)— We therefore now show the reciprocal of frequency
1/x against rank using a linear scale, and this in fact

corresponds to a particular definition of the average
interval between words. &/show how this looks in
Figure 7 for three diérent definitions of the average
interval: ‘interval’ corresponding to dividing the corpus
length by frequency (valid if imagine that the following
text segments of this size have the same structure);
‘initival’ corresponding to treating the start of the corpus
as the first reference point (valid if the interval to the first
occurence is a good predictor of the interval between

0.01

0.001

0.0001

le-0 1935 30 20 S0 &0 =0 8055100 occurences); aqd intraval’ corresponding to conS|der.|ng
_ . _ _ _ only the f-1 intervals between actual successive
Figure 5 Comparison of convering series with - occurences. Note that the ‘interval’ which corresponds
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1 Av. Interval, Intraval and Initival 1 Interval: over entire corpus (vs rel. rank; avrf1=262

@)
0.8 0.8
0.6
0.6 i
0.4 A |
o = alice.sinter26685"—
04 15 ] x*2620/avrfl
x**1.05 0.2 — sqr(x*2620/avrfl) —
0.2 . o X — /’J *2620/avrf1*L(x*2620/)/L(avrfl
: "alice.siniti26685" — 2620/avrfl*sgr(lg(x*2620)/Ig(avrfl))
"alice.sintra26685" 0
“alice.sinter26685— ]
O0 03 07 G o8 1 1 Interval: over entire corpus (vs rel. rank; avrf1=148

Figure 7. Comparison of interval definitions and |

directly to a scaled reciprocal of the rank, is guaranteed to
have a step shape as many words have the same.g
frequency This discretization is avoided by the other
definitions. In Figure 7 we show these as a normalized 0.4
intervals (divided by the corpus size, 26685) against
normalized rank (divided by the lexicon size, 2620) 0.
along with lines corresponding to Zipf Law
Mandelbrots Modification (proposing an exponent of
1.05), the best fit power for our small test corpus (1.2) 1 Interval: over entire corpus (vs rel. rank; avrf1=215
and the quadratic model of Brent (1997). (©)
There are many details of Zigftheory which we are 0.8
unable to go into in the confines of this paert at this
point we need to note two things. First, that Zipf claimed 0.6
that claimed the reciprocal law applies only to an 4 \

"alice.sinter26685"—
x*2620/avrfl
sqr(x*2620/avrfl) —

x*2620/avrf1*L(x*2620)/L (avrfl
x*2620/avrfl*sgr(lg(x*2620)/Ig(avrfl))

optimum sample size corresponding to a single cycle for T "alice.sinter26685"—

; - x*2620/avrfl
the least frequent Wor_d, such that the maximum g2 Z A Sqr(x*2620/avrfi)
frequency and the maximum rank were equal to the o

x*2620/avrf1*L(x*2620)/L (avrfl
x*2620/avrfl*sqr(lg(x*2620)/Ig(avrfl))

0.2 0.4 0.6 0.8 1
Figure 8 Comparison of top step cut points

intercepts of the line of best fit of gradient -1 (least 0=
squares in log scale). Of course as the corpus grows, new
words of frequency 1 enteo his principle is to select the
size which gives gradient closest to -1 across @elar line should pass through the middle of the steps in
number of samples of the corpus (which should bd=igure7 (as in Figure 2). This may also be viewed in
consistent as to genre, regist@ge of speakeetc.) For another wayThe midpoint of a step may be viewed as
most published literature this should correspond tashowing close to its correct frequency and rank, whilst
around 10000 words (thus this is the size of the usualords which should not occur an integral number of
active lexicon) while for children around the time of times in a sample of the selected size will be rounded to
starting school it is around 2000 words. Our corpus ign integral frequencyrhey will necessarily occur more
around 2.5 times his optimum for literature, and as we arer less than the expected number of times. This problem
using Alice in Wnderland which is supposedly a does not apply to our alternate definitions of average
childrens book about a child, and is of informal intervals. Thus for ‘intervals’ we should fit the midpoint
character perhaps he would probably have suggestedf the intervals, and in particular the midpoint of the
using even smaller sample sizes. Howewver are not frequency 1 step, for ‘initivals’ we have the full range of
content to characterize samples of an optimum size, arttle corpus available and should fit the high point of the
we are aiming to determine how the law should bdrequency 1 step, and for ‘intravals’ we should fit the low
adjusted to take into account sample size. point since frequency 1 does not define an intraval and
The second deviation from Zigfpractice is implicitin  the value is arbritrarily set to a limit of 1.
the mechanism for determining the optimum sample size Figures 8 and 9 show fits to thesefeliént points on
as just explained: The correct line to draw is a line of beghe top step, and allow comparison with the cogest
fit, minimizing the least squares error in the prediction oinformation theoretic functions we have discussed. In
the log of frequency from the log of rank. This means aré&igure 8c there is an evident log-squared bias.
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From Figure 9 it will be observed that our new Whilstitis possible to fit higher order polynomials and
definitions of average interval have a totallyfetiént  exponentials to to these curves, the fits are not good. In
characteristic from the old. Not only have we eliminatedrigure 9c we have fitted a 6th order polynomial which is
the ‘steps’, but the resulting functions are clearly far fromindistinguishable in the range from an exponential
linear, and from the slowly convgent log-based series. formulated in terms of the probability that a word does
Clearly for words that occur locally rather than globallynot occur We do not see this as something where an
in the corpus, these methods progressively add a biaxplanation as a single distribution is appropriate, and
relating to the location of a cluster of occurences — anthter we view these as a joint distribution for open and
better reflect the frequenct of clusters. This is somethinglosed class words, and in Figure 9c we show that the
else Zipf has considered: for words of a particulatbends in the curves look more like transitions between
average frequency (and thus interval), the number afwo distinct distributions obeying dérent parameter
intervals of a particular size also varies inversely withizations of some form of Zip$ law
that interval size (1949, p42). In Zipfmodel this results

from spreading the workload away from costly words. 2.4 Psychological Pedictions

Initival: vs reciprocal rank; avrf1=2620

0.8

x*2620/avrf1*sqgr(lg(x*2620)/lg(avrfl))
x*2620/avrf1*L (x*2620)/L(avrfl)

—— sqr(x*2620/avrfl)
x*2620/avrfl

—— "alice.siniti26685"

[

0.8

0.6

0.4

0.2

Intraval: vs reciprocal rank; avrf1=1486

"alice.sintra26685"——
x*2620/avrfl
sqr(x*2620/avrfl) —

/ .*L(x*2620)/L(avrfl)
: *sqr(lg(x*2620)llg(avrfl))
(x*2620/avrfl)**6
(1642*(1 X*2620/26685))**(x*2620/avrfl-1)---

(b)

(I

Initival: vs reciprocal rank; avrf1=2620/0.6

0.

[e]

0.

()]

0.4

0.2

0

— "alice.siniti26685"

F— sqr(x*2620/avrfl)

x*2620/avrfl
x*2620/avrfl*L (x*2620)/L(avrfl)

x*2620/avrf1*sqr(lg(x*2620)/lg(avrfl))
(x-0.6)/0.4

© -
// /

0

0.2 0.4 0.6 0.8 1
Figure 9 Comparison of interval definitions
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If we believe Zipfs law in its standard form, and scale
frequencies to probabilities for a finite lexicon, then
information theory suggest that the length of words
should look like the log of frequenand the access time
for words should follow the log of word frequency
Assuming that the lexicon is unbounded, then
information theory suggest that the length of words
should be L(x) arless optimallylog x + 2 log log x.

Zipf went further and predicted that the older words
would be the more frequent, both in an etymological and
a psycholinguistic sense, and performed experiments to
demonstrate the law in relation to the etymology of
English, as well as performing some analyses of
childrens speech which were also consistent with his
model. However his experiments on length did not
quantiatively demonstrate what relationship was
achieved, and he was expecting a negative power
relationship again. Moreovehe did not perform any
experiments to check the validity that access time would
reflect an inverse relationship, and expected that length
(m,) and access timel{) would be proportional td’.

Studies of latencies in various linguistics task have,
however been extensively studied by psychologists, and
although the interpretation of the results is controversial,
and the results are more qualitative than quantitative,
considerable evidence exists to support a logarithmic
access time, and have been the basis for one of the most
influential models of word recognition, the Logogen
model (Morton, 1969). There is also Event-Related
Potential evidence from EEG studies, but these results
are even less precise and we ignore them here (although
we have undertaken some ERP experiments ourselves
and hope to further elucidate certain factors in this way).

Looking more closely at the experimental data, we
find, just as with the frequency data, that there are strong
contextual dects (Becker 1979) which tend to be
additive, particularly for lew-frequency words. An
additional confusion factor is that subjective measures of
familiarity which actually can better predict access time
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than more objective frequency measures (Gernshacher
1984). As Zipf also knemthe number of distinct also

I9(2620/x)/(2620/X)*60—

. - 2620/sqr(x)
plays a role, and Zipf himself found that the number of _ 2620/x—

meanings decreased with the square root of frequency .alice.rrawinp”
. . alice.nrawlnp™—

(1949, p75). Other reported confusion factors include "alice.rintinp"
concreteness, level of education, age, age of acquisitior100 "alice.nintinp"—

and word length. Also there is a correlation between
word frequency and the signal to noise ratio which may
be tolerated by a word, as well as the fixation time in ‘\
reading a word. The mode of presentation and the method W/\mwm
of testing may also influence the relationships found, as 1 I
can even such factors as stress pattern and syntactic role. 4 16 64 256 1024
Thus the role of frequency as a primary determiner of Figure 1. Approximation to numbers giverefjuency
access time is highly controversial although theon the basis that the logarithmic relationship is required
relationship itself is well accepted (Balota & Chumbley for optimality in each case. The results do however seem
1984 & 1990; Monsell, Doyle & Haggard, 1989). to contradict Zipfs prediction that lengtim, and access

As we can see from Figure 10, the length data doegme, d, would be proportional t6%-2 although it must
support a logarithmic relationship, notwithstanding that e emphasized that the correlations are far from perfect
log-squared bias was observed in Figure 8. However thend the precise trends cannot be distinguished to any
square root of the logarithm is best for this datagreat degree of accurac@ur own data in Firure 10
Nevertheless the information theoretic optimum iSsuggests that the relation is actua")ﬂ-égand the curve
approximated for this corpus and we would furtherfor f 0->moves right away from the data at both extremes.
predict a similar function for the access time for words. However we have no accurate information for access

Although the age of acquisition and length both showime and we will simply note that both length and access
stronger correlation with latency than frequency intime have a generally logarithmic relationship with
naming tasks, and this has been cited as evidence agaiRgiquencyand that L(1/) is also a better fit thafn®->.
word frequency having a significantedt on access time  Nonetheless, this has implications for the principle of
(Morrison, Ellis and Quinlan, 1992), this observationjeast efort in that the Zipfs relationship for work,,
supports the predictions we made on the basis ofZipf w=f* m* d=f /|092f = 1/r.|ogzr, is not constant, and
Law and Information TheoryEven if the age of indeed Information Theory says we should actually do
acquisition and phoneme length fully determine accesgss work for more frequent items. Moreqvéhis
time, the fact of correlation between frequency andelationship for work now obeys a law consistent with
latency is not disturbed, and we can hypothesize that highear optimality in an unbounded lexicon modele W
frequency leads to early and frequent exposure to, ansbuld moreover replace Zigf law by f= 1/r.|ogzr,
thus learning of, a word; and furthermore, that the earlgonsistent with the improved empirical fit of Figure 8c.
learning, in combination with constant refreshment, This gives us a new relation for the number of words
maintains the word at a relatively greater level ofaround each frequendyor Zipf's Law f = c/r gave us
accessibility than less frequent words. Similanye = c/f 2 = r/f. For our new versiori,= C/r_logzr gives udn
predicted a strong correlation between length and lateney log r/bf (where our new constarit, depends on the
base of our log and is given ly= 2loge). Thus for
Zipf's Law the number expected for each frequency is

Wordlength versus Frequency

8 the corresponding fraction of the number of words with
7 higher frequencybut our new numbers grow more
5 slowly, the frequency specifying a fraction of the log of
the number of words with higher frequen8yubstituing
5 : an overestimate for the rank using ZgpfLaw in
al \ “alice lenp" : Figurell we approximate the number at frequehby
.0 5%50 n = log(c/f)/bf (which is a bit steeper than the correct
31 L(2620)-L(x) inverse would be) and is at least as good a fitf#sand
0| 19(2620)-19(x) e N indeed better reflects the distribution of the sparse ranks
sqrt(lg(2620)-lg(x))*2 .
1| 19(2620)-1g0+2*(1g(19(2620))-Ig(g0)) where the expected number of words for a frequency is
1 10 100 1000 less than one. The corresponding optimal length

function, again with rank overestimated using Zpaw

Figure 1Q Wordlength versus Eequenc
¢ g fer y (and hence also too steep), is shown in Figure 10.
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From the perspective of our own research in Natural
Language Learning, the most significant results from1024
these psychological explorations of access time are those
which suggest that open class words show a more
significant efect than closed class words, and have 510
distinct roles and mechanisms in the early stages of
morphological processing (Segui, MehlErauenfelder
and Morton, 1982; Matthei and Kean, 1989).

Frequency vs Rank - common-high hypothesi

256

3. Corpus Characteristics and Sample Size

One of Zipfs claims was that a given text had particular 128
characteristics which included a characteristic optimum
sample size and lexicon size. He chose the optimum
sample size to be the one with the best fit to'Zipaw 64
and this implicitly specified a lexicon. Howeyeis the i
sample is increased above that point, new word types |~ Zg‘gé‘fesggpﬁg)‘fe'_Cgi’:tmg{‘vz’,‘(’)‘;adss
continue to enter the lexicon. He furthermore notes that double sample - common words
informal colloquial speech gets a hump in the first 150 0 64 128 256 512 1024
words, one which has generally been associated with
increased usage of the personal pronouns.fifkther
noted that there is evidence (Matthei & Kean, 1989common set. These word types will thus exhibit a
Segui et al., 1982) that open and closed class words areduced slope, and there will be a jump and a sudden
treated diferently, and it could also be assumed that therediscontinuity in slope between the common and the
is a primary subject, and hence lexicon, for any specifi¢listinct words as in Figure 12 In general, whereever new
work, as well as secondary or incidental topics. As arfor displaced) vocabulary enters the picture, there will be
average of independent topics, we might expect the lavieduced slope — rank will increase without much change
to re-emege, but the closed class (including generics)n frequency Similarly, where disused vocabulary is
cannot increase in size as the lexicon does. displaced, rank will decrease without much change in

One of our motivations for undertaking this study wasfrequency giving rise to increased slope. In fact there is
the observation during our language learningevidence of a jump and discontinuity which occur at a
experiments that as corpus size increased, ZipAw  rank logarithmic in the size of the lexicon.
tended to be increasingly invalidated, with the curvature In another model, we can imagine replacing a pair of
increasing consistent with a move to a continually higheequally likely synonyms by one member of the peaid
exponents. While it would be predicted for the highesnote that this will double &'frequency and halve its rank.
ranks of each step to exhibit a quadratic component, dughis is consistent with Zipé Law although in between
to the size of the step reflecting the number of words witithe old and new positions, ranks will increase without an
that frequencythe tendency &fcted the lowest and increase in frequengyand after the old position, ranks
median ranks as well. will decrease without a decrease in frequeridys will

To investigate this analyticallywe assume that we produce the kind of bulge Zipf identified with informal
have two samples each of which has a lexicon oflize text. Shifting words can thus cause discontinuities too.
which includes a common vocabulary @, and that At this stage, it may be worth saying a few words about
each sample obeys ZigfLaw We further assume that the corpus used throughout this papdice’s Adventues
the common vocabulary includes the closed class word#) Wonderland(Carroll,1865) is an edited collection of
and more generally the most frequent words in thehildrens stories, originally delivered verballyand
language and relating to the topic of the corpus. Iptite culminating at a Picnic in 1862 when Alice going down
words were the most frequent words of the individualthe rabbit hole provided the framework and cast the spell
samples, and were exhibiting their characteristiovhich eventually led to publication. As a series of
frequencies, they would exhibit exactly double theadventures, there are some characters in common, some
frequency for the same rank, thus retaining the samef whom recur but entire vocabularies are limited to a
slope in a log-log plot. The converse is true for thesingle chapteiVe used the Millennium Fulcrum Edition
remainder of the lexicon: the words will all the same2.9, available through the GutenpdProject, which is
frequency as in the smaller samples, but their ranks wilkignificant since this attribution occurs at the beginning
have increased in proportion to their distance above thef the book and &cts our analysis.

—— single sample - distinct word

Figure 12 Model with high feq. common vocabula
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Figure 13 Frequency against Rank as corpus doubles in size —sAMideentugs in Vnderland

Having made the above predictions about the shape tiases, so that if the artifacts we are observing are
the curves under both extreme conditions andgrimarily thematic, we should see similar artificacts in
incremental change, we then proceeded to an analysis sifmilar places. W should separately be able to see the
Alice produced by taking successive prefixes of the boolkeffects of language and translation style. Although some
These are shown in Figure,8nhere each prefix is twice translations are tgeted at a more popular level and use
the size of its predecessdiote the discontinuities that less technical vocabularlywe have selected four
start in our first doubling, where closed class words stattraditional translations three of which use reasonably
to sift above above the non-recurring words of the titlecontemporary language (the versions are ,KB8V
page, some of which only occur once in the wholeLouis Segond, Elberfelder).
volume. This shift starts in the first order of ranks and is Whereas Alice allowed us to double onlytimes, the
visible well into the second order of ranks. The dipsBible allows us to double 16 timeseWave however for
which appear and disappear around rank 10 in therdar consistency and convenience kept with the smaller Alice
segments are due to the competition between the worderpus for the graphs shown here (the equivalent of
‘said’, ‘in’ and ‘', and the name ‘Alice’ as the story Figure 13 for each version of the bible is about 1Meg of
alternately focuses on her involvement and sceneBostScript). In Figure 14 we show the results for French
involving other characters, and changes its balanctor the last seven samples, this being the one where the
between narrative, solilogugnd reported speech. The discontinuities were least pronounce. In each case there
beginning of the second order ranks marks the transitiowere one or two deep drops around rank 10, followed by
between closed class words and focal words. The first 28 steepening of slope.
words arethe, and, to, a, she, it, of said, I, Alice, in, you,
Was,_that, as, heat, on, all, with and the remainder of_ 4. Conclusions
the first 100 are all closed class words (plus narrative
devices likethink andlooked or characters — with the At this stage, only tentative conclusions can be made
single exception of the wortead (which is closely from this preliminary studies, although further
linked to the one character who wasini danger of investigations are being undertaken usingdaicorpora
losing hers). in multiple languages. Zipd theory requires ffrt to be

Thus in this range we see a number of discontinuitiesonstant independent of frequenlgwever Information
as words move into and out of the focal range, and twdheory and Psychological experiments both indicate that
different slopes corresonding to the closed class and focHlis ought not to be the case, and that it in fact decreases
words, and the open class words. in a way consistent with an optimal strategy for an

We have carried out a similar and more extensive studynbounded lexicon. @/have not been able to establish
on the Bible in four languages. It also has the character dlfie validity of an optimum sample size for a particular
sequences of stories focusing onfefiént people and corpus, genre or lexicon, but observe that new words tend
events, and is also ely and edited version of verbal to enter faster than they repeat, as evidenced by the fact
accounts. Using multiple versions retains the thematithat the number of words of frequency 1 tends to increase
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as the size of sample increase. Given that language fsnch, S. (1993)Finding Structue in Language.Ph.D
productive, and an unbounded lexicon model has been Dissertation, U. Edinbgh _
indicated (or at least possible) in each of our experiment§€ernsbacher M.A. - (1984) Resolving 20 years of

this trend may well continue indefiniteblthough it does

seem to slow as the sample is increased (even though we

increase by doubling).
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