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1. Introduction
Natural language learning seems, from a formal
point of view, an enigma. As a matter of fact, every
human being, given nearly exclusively positive
examples (as psycholinguists have noticed) is able at
the age of about five to master his/her mother
tongue. Though, no linguistically interesting class of
formal languages is learnable with positive data in
usual models (Gold’s (67) and Valiant’s (84)).

To solve this paradox, various solutions have
been proposed. Following the chomskian intuitions
(Chomsky 65, 68), it can be admitted that natural
languages belong to a restricted family and that the
human mind includes an innate knowing of the
structure of this class (Shinohara 90). Another
approach consists in putting structural, statistical or
complexity constraints on the examples proposed to
the learner, making his/her inferences easier
(Sakakibara 92).

A particular family of research, more concerned
with the cognitive relevance of its models, considers
that in « natural » situations, examples are always
provided with semantic and pragmatic information
and tries to make profit of it (Anderson 77;
Hamburger & Wexler 75 ; Hill 83 ; Langley 82).
This is the family our research belongs to.

But the property of meaningfulness of natural
languages is computationally tractable only if we
have at our disposal a theory that precisely
articulates syntax and semantics. The strongest
possible articulation is known as the Fredge’s
principle of compositionality. This principle has
acquired an explicit formulation with the works of
Richard Montague (Dowty, Wall & Peters 81 ;
Montague 74) and his inheritors.

We will first briefly recall an adapted version of
this syntactico-semantic framework, based on a type
of grammars called « classical categorial
grammars » (or CCGs), and we will t hen show how
it can been used in a formal theory of natural
language learning.

2. Syntactic analysis with CCGs
A categorial grammar G is a 4-tuple G=<V, C, f, S>
with :

- V is the finite alphabet (or vocabulary) of G ;
- C is the finite set of basic categories of G ;

From C, we define the set of all possible
categories  of G, noted C’ , as the closure of C for

the operators / and \. C’ is the smallest set of
categories verifying :

   *  C� C’ ;

   *  if X � C’ and Y � C’ then : X/Y � C’ and

Y\X � C’ ;
- f is a function  : V—>Pf(C') where Pf(C') is the

set of f inite subsets of C', which associates each
element v in V with the finite set f(v) � C' of its
categories ;

- S� C is the axiomatic category of G.
In this framework, the set of syntactically correct

sentences is the set of f inite concatenations of
elements of the vocabulary for which there exists an
affectation of categories that can be « reduced » to the
axiomatic category S. In CCGs, the admitted
reduction rules for any categories X and Y in C’ are :

- R1  : X/Y . Y —> X
- R’1 : Y . Y\X —> X
The language L(G) defined by G is then :
L(G)={ w � V*; � n � N � i � { 1,..., n} wi � V,

w=w1...wn and � Ci � f(wi),
            C1...Cn—*—>S}.
The class of languages defined by CCGs is the

class of context-free languages (Bar Hill el, Gaifman
& Shamir 60). CCGs are lexically oriented because
grammatical information is entirely supported by the
categories associated with each word. They are also
well adapted to natural languages (Oehrle, Bach &
Wheeler 88).

Example :
Let us define a CCG for the analysis of a small

subset of natural language, including the vocabulary
V={ a, every, man, John, Paul, runs, is, ...} . The set of
basic categories is C={ S, T, CN} where T stands for
« terms » and is affected to proper names, CN means
« common nouns », intransitive verbs receive the
category T\S, transitive ones : (T\S)/T and
determiners : (S/(T\S))/CN. Figures 1 and 2 display
analysis trees.

         a              man         runs
(S/(T\S))/CN     CN          T\S
           R1

   S/(T\S)
       R1

   S

      figure 1 : analysis tree n° 1
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John         is             Paul
T          (T\S)/T          T

R1
       T\S

     R'1
S

figure 2 : analysis tree n°2

3. From syntax to semantics
The key idea of Montague’s work (74) was to define
an isomorphism between syntactic trees and
semantic ones. This definition is the formal
expression of the principle of compositionality. It
allows to automatically translate sentences in natural
language into formulas of an adapted semantic
language that Montague called « intentional logic ».

3.1 The semantic representation

Intentional Logic (or IL) generalizes the first order
predicate logic by including typed lambda-calculus
and by making a general use of the notion of
modality through the concept of intension (Dowty
81). Only a simpli fied version of this framework
(not taking into account intensions) is recalled here.

- IL is a typed language : the set I of all possible
types of IL includes

  * elementary types : e � I (type of « entities »)
and t � I (type of « truth values ») ;

  * for any types u � I and v � I, <u,v> � I (<u,v> is
the type of functions taking an argument of
type u and giving a result of type v).

- semantics of IL : a denotation set Dw is
associated with every type w � I as follows :
  * De=E where E is the denumerable set of all

entities of the world ;
  * Dt={0,1} ;
  * D<u,v>=Dv

Du : the denotation set of a
     composed type is a function.

3.2 Translation as an isomorphism

Each analysis tree produced by a CCG can be
« translated » into IL :

- translation of the categories into logical types
(function k : C’ —> I) :

  * basic categories : in our example,
     k(S)=t, k(T)=e, k(CN)=<e,t> ;
  * derived categories :

for any X� C’ and Y� C’ :
k(X/Y)=k(Y\X)=<k(Y),k(X)>.

- translation of the words (q : V �  C’ —> IL) :
each couple (v,U) where v is a word in V and
U � f(v) � C' is (one of) its category(ies) is
associated with a logical formula q(v,U) of IL
whose type is k(U) � I. The most usual and
useful translations are :

  * q(a,(S/(T\S))/CN)=� P� Q� x[P(x)	 Q(x)]
     q(every,(S/(T\S))/CN)=� P� Q
 x[P(x)� Q(x)]

      where x and y are variables of type e, P and Q
variables of type <e,t>.

  * the verb « to be », as a transitive verb, is
translated by :

      q(is,(T\S)/T)=� x � y[y=x]
      with x and y variables of type e.
  * Every other word w is translated into a logical

constant noted w'.
- translation of the rules of combination :

Rules R1 and R’1 are translated into oriented
functional applications (Moortgat 88) :

W1 :  f . x  —>  f(x)
W'1 :  x . f  —>  f(x)

These definitions preserve the correspondence
between categories of the grammar and types of logic.
This property assures for example that syntactically
correct sentences (of category S) will be translated
into logical propositions (of type k(S)=t, i.e. with a
truth value).

Example :
The example sentences analyzed in figures 1 and 2

can now be translated into IL, as shown in figures 3
and 4 respectively.

� P� Q� x[P(x)	 Q(x)]    man'              run'
            W1
    � P� Q� x[P(x)	 Q(x)](man’)
     =� Q� x[man'(x)	 Q(x)]

             W1
                 � Q� x[man’(x)	 Q(x)](run')
                    =� x[man’(x)	 run’(x)]

figure 3 : semantic translation of tree n°1

        John'         � x � y[y=x]      Paul’
                   W1
               � x � y[y=x](Paul’)

             W’1           =� y[y=Paul’]

� y[y=Paul’](John’)
    =[John'=Paul']

figure 4 : semantic translation of tree n°2

4. The learning model

4.1 Innate knowledge and concepts to learn

When a human being learns a natural language, we
suppose that he has at his disposal sentences
syntactically correct and semantically relevant. The
corresponding situation in our model is an algorithm
which takes as inputs a sentence that can be analyzed
by a CCG together with its logical translation into IL.

The innate knowing supposed is reduced to the
inference rules R1 and R’1 and the corresponding
translation rules W1 and W’1. As opposed to usual
semantic-based methods of learning, no word
meaning is supposed to be initially known.
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Finally, what does the learner has to learn ? In
our linguistic framework, syntactic and semantic
information are attached to the members of the
vocabulary by functions f and q. These functions are
the target outputs of the algorithm. More precisely,
the syntactic and semantic knowledge to be learned
can be represented as a finite list of triplets of the
form : (v,U,w) where v � V, U � f(v)  C' and
w=q(v,U) � IL.

Example :
Learning the example grammar previously used

means learning the following set :
H={(John, T, John'), (Paul, T, Paul'),
       (is, (T\S)/T, � x � y[y=x]), (runs, T\S, run'),
       (a, (S/(T\S))/CN, � P� Q� x[P(x)� Q(x)])...}.

4.2 The learning algorithm

The proposed leaning strategy, given in figure 5,
consists in building a hypothesis set, updated after
each new input, to approach the target set.

For every couple <s,� (s)> where s is a sentence and
� (s) its logical translation in IL, do :

- if there is one, affect to the words in s their
category in the current hypothesis set ;

  else, make hypotheses on the category
associated by f with the unknown words of s ;

- For every possible analysis tree :
*  translate the tree into IL ;
* compare the final translation with � (s) and

infer possible values for the unknown semantic
translation of words to update the current
hypothesis set.

Figure 5 : the learning strategy

4.3 A detailed example

At the beginning, the current hypothesis set is the
empty set. Let us suppose that the first given
example is <John runs, run’(John’)>.

-  the syntactic hypotheses : the only categories
allowing to build an analysis tree are

  * first possibility : f(John)=A and f(runs)=A\S ;
  * second one : f(John)=S/B and f(runs)=B.

where A and B can be any category in C’ , basic
or not.

-  the semantic translation :
  * first possibilit y : see fig. 6 (the input data are

put into rectangles).

John     runs     q(John,A)      q(runs,A\S)
   A        A\S                 W’1
  R’1      ==>    q(runs,A\S)(q(John,A))

        S          =run’(John’)

figure 6 : hypothesis H1

If we compare q(runs,A\S)(q(John,A)) with
� (s)=run’(John’), it leads to :

q(run,A\S)=run' and q(John,A)=John'.
So a possible hypothesis set is :
H1={(John,A,John’), (runs,A\S,run’)}.
Similarly, the second possibilit y leads to
another possible hypothesis set :
H2={(John,S/B,run’), (runs,B,John’)}.

At this stage, we have no reason to prefer one
hypothesis to the other (the learner does not know that
John is linked with John’ , neither about runs and
run’) . The current hypothesis is then : H1 OR H2. But
suppose now that a second given example is <Paul
runs, run’(Paul’)>. The same process applies to this
example, except that « runs » now belongs twice to
the current hypothesis set.

- the syntactic hypotheses : the new sentence
treated with H1 forces to affect the category A to
« Paul », while H2 forces to affect the category
S/B.

- the semantic translation :
  * in the first possibility, H1 becomes

H1’={( John,A,John’),(runs,A\S,run’),
                                               (Paul,A,Paul’)}

  * it is impossible to provide a value to
q(Paul,S/B) following the tree built with
hypothesis H2.

So H2 is abandoned and only H1’ remains. It can
be noticed that a similar conclusion would have
followed if the second example had been :

<John sleeps, sleeps’(John’)>.
Any other example sentence including one of the

words concerned by the current hypothesis is enough
to discredit hypothesis H2.

5. Evaluation and conclusion
The choices made in this model have theoretical
backgrounds and consequences.

First, CCG seem to be particularly adapted to the
learning process. Recent researches have found
conditions under which the syntax of these grammars
is learnable (Buszkowski & Penn 90, Kanazawa 96).
But, in these frameworks, tree structures are provided
as inputs to the learning algorithm : in our model, the
semantic translation plays a close role but in a weaker
and more cognitively relevant fashion. Adriaans (92)
also proposed a learning algorithm for categorial
grammars, using both syntactic and semantic inputs,
but he treated them separately : the semantic learning
could only start when the syntactic learning was
achieved, instead of helping it as we propose.

Previous models built i n the syntactico-semantic
spirit (Anderson 77, Hamburger & Wexler 75, Hill
83, Langley 82,) used more traditional syntax and
semantic representations very close to syntactic
structures (Pinker 79) : they failed to represent
complex logical relations like quantification or
Boolean operators. Logical languages like IL are
more powerful and a priori independent from
linguistic structures. In fact, our approach assumes
that logic is the natural « language of the mind » in
that situations perceived by our learner are supposed
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to be automatically translated into logical formulas
before being compared with linguistic expressions.

Fundamentally, what makes natural languages
learnable in our model is the presupposition that
there exists an isomorphism between the syntax of
sentences and their semantics. This strong principle
of compositionality is contested by some linguists
but remains an interesting approximation. The
« graph deformation condition » used in (Anderson
77) was a weaker version of it. Under this condition,
the inputs provided to the learner are the leaves and
root respectively of two isomorphic trees and what is
to be reconstituted is the body of these trees, as
displayed in figure 6. But, as opposed to (Anderson
77), there is an asymmetry : the formalism chosen is
adapted to language analysis but not to language
generation.

The eff iciency of the algorithm seems to
crucially rely on the complexity of the input
relatively to the current hypothesis. This complexity
can be measured by the number of new words
appearing in a sentence example. If f ew new words
are introduced in each new example, the number of
hypotheses to explore will remain reasonable. Else,
the learning may be too complicated. Of course, this
valuable intuition still needs to be formulated and
proved in a more formal way.

It is not possible to develop here how to treat the
cases when a word needs more than one category,
but it remains possible to learn in this context. The
learning is incremental.

The framework is still i ncomplete because we
haven’ t chosen any learning model and we haven’ t
proved the learnabilit y of any language in it with our
strategy. An extended and more general version of
the algorithm in figure 5, using Lambek grammars
(Lambek 58), is being implemented and tested. But
the approach seems original and interesting enough
to be developed further.
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